Matching Items (170)
133892-Thumbnail Image.png
Description
Alzheimer’s Disease (AD) affects over 5 million individuals in the U.S. and has a direct cost estimated in excess of $200 billion per year. Broadly speaking, there are two forms of AD—early-onset, familial AD (FAD) and late-onset-sporadic AD (SAD). Animal models of AD, which rely on the overexpression of FAD-related

Alzheimer’s Disease (AD) affects over 5 million individuals in the U.S. and has a direct cost estimated in excess of $200 billion per year. Broadly speaking, there are two forms of AD—early-onset, familial AD (FAD) and late-onset-sporadic AD (SAD). Animal models of AD, which rely on the overexpression of FAD-related mutations, have provided important insights into the disease. However, these models do not display important disease-related pathologies and have been limited in their ability to model the complex genetics associated with SAD.

Advances in cellular reprogramming, have enabled the generation of in vitro disease models that can be used to dissect disease mechanisms and evaluate potential therapeutics. To that end, efforts by many groups, including the Brafman laboratory, to generated patient-specific hiPSCs have demonstrated the promise of studying AD in a simplified and accessible system. However, neurons generated from these hiPSCs have shown some, but not all, of the early molecular and cellular hallmarks associated with the disease. Additionally, phenotypes and pathological hallmarks associated with later stages of the human disease have not been observed with current hiPSC-based systems. Further, disease relevant phenotypes in neurons generated from SAD hiPSCs have been highly variable or largely absent. Finally, the reprogramming process erases phenotypes associated with cellular aging and, as a result, iPSC-derived neurons more closely resemble fetal brain rather than adult brain.

It is well-established that in vivo cells reside within a complex 3-D microenvironment that plays a significant role in regulating cell behavior. Signaling and other cellular functions, such as gene expression and differentiation potential, differ in 3-D cultures compared with 2-D substrates. Nonetheless, previous studies using AD hiPSCs have relied on 2-D neuronal culture models that do not reflect the 3-D complexity of native brain tissue, and therefore, are unable to replicate all aspects of AD pathogenesis. Further, the reprogramming process erases cellular aging phenotypes. To address these limitations, this project aimed to develop bioengineering methods for the generation of 3-D organoid-based cultures that mimic in vivo cortical tissue, and to generate an inducible gene repression system to recapitulate cellular aging hallmarks.
ContributorsBounds, Lexi Rose (Author) / Brafman, David (Thesis director) / Wang, Xiao (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134308-Thumbnail Image.png
Description
Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and

Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions.
ContributorsPeela, Nitish (Author) / Nikkhah, Mehdi (Thesis director) / LaBaer, Joshua (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134426-Thumbnail Image.png
Description
Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means. Chemical transfections are simpler in practice than both viral and

Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means. Chemical transfections are simpler in practice than both viral and nonchemical delivery of genetic material, but often suffer from cytotoxicity and low efficiency. Novel aminoglycoside antibiotic-derived lipopolymers have been synthesized to mediate transgene delivery to human cells. These polymers are comprised of either paromomycin or apramycin crosslinked with glycerol diglycidylether and derivatized with stearoyl chloride in varying molar ratios. In this work, three previously identified target lipopolymers were screened against a library of human embryonic and induced pluripotent stem cell lines. Cells were transfected with a plasmid encoding green fluorescent protein (GFP) and expression was quantified with flow cytometry 48 hours after transfection. Transfection efficiency was evaluated between three distinct lipopolymers and four lipopolymer:DNA mass ratios. GFP expression was compared to that of cells transfected with commercially available chemical gene delivery reagent controls\u2014JetPEI, Lipofectamine, and Fugene\u2014at their recommended reagent:DNA ratios. Improved transgene expression in stem cell lines allows for improved research methods. Human stem cell-derived neurons that have been genetically manipulated to express phenotypic characteristics of aging can be utilized to model neurodegenerative diseases, elucidating information about these diseases that would be inaccessible in unmanipulated tissue.
ContributorsMehta, Frea (Author) / Brafman, David (Thesis director) / Rege, Kaushal (Committee member) / Chemical Engineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134436-Thumbnail Image.png
Description
Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor

Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor OLIG2 in maintaining the tumor-propagating potential of these glioma stem cells. OLIG2's function was further elucidated, with its pro-mitogenic function due to its ability to negatively regulate the p53 pathway by suppressing the acetylation of the p53 protein's C terminal domain. Past work in our lab has confirmed that one of OLIG2's partner proteins is Histone Deacetylase 1 (HDAC1). In vitro experiments have also shown that targeting HDAC1 using hairpin RNA in glioma stem cells negatively impacts proliferation. In a survival study using a murine glioma model, targeting Hdac1 using hairpin RNA is shown to reduce tumor burden and increase survival. In this paper, we demonstrate that silencing Hdac1 expression reduces proliferation, increases cell death, likely a result of increased acetylation of p53. Olig2 expression levels seem to be unaffected in GSCs, demonstrating that the Hdac1 protein ablation is indeed lethal to GSCs. This work builds upon previously collected results, confirming that Hdac1 is a potential surrogate target for Olig2's pro-mitotic function in regulating the p53 pathway.
ContributorsLoo, Vincent You Wei (Author) / LaBaer, Joshua (Thesis director) / Mehta, Shwetal (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134234-Thumbnail Image.png
Description
CREB3L1 has been previously shown to auto-acetylate itself when prepared from HeLa cell based in vitro protein expression lysates. To circumvent the concerns of the contamination of co-purified human proteins from HeLa lysates, the protein was purified through insect cell transfection in vitro. The objective of this study was to

CREB3L1 has been previously shown to auto-acetylate itself when prepared from HeLa cell based in vitro protein expression lysates. To circumvent the concerns of the contamination of co-purified human proteins from HeLa lysates, the protein was purified through insect cell transfection in vitro. The objective of this study was to assay the auto-acetylation activity of CREB3L1 prepared from insect cells using the baculovirus expression vector system (BEVS). To this end, His-tagged CREB3L1 was affinity purified from Hi5 cells using an IMAC column and used for acetylation assay. Samples were taken different time points and auto-acetylation was by western using antibodies specific to acetylated lysines. Auto-acetylation activity was observed after overnight incubation. Future experiments will focus on the improvement of purification yield and the identification of the substrates and interacting proteins of CREB3L1 to better understand the biological functions of this novel acetyltransferase.
ContributorsSchwab, Anna (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
134621-Thumbnail Image.png
Description
the project led by Professor Emma Frow, researching of stem cell clinics focused on stem cell applications, adherence to FDA guidelines, and characterization of information available and physician credentials. Regenerative medicine clinics commonly offered stem cell therapy, but introduced platelet rich plasma (PRP) and prolotherapy as regenerative therapies.
PRP and Prolotherapy

the project led by Professor Emma Frow, researching of stem cell clinics focused on stem cell applications, adherence to FDA guidelines, and characterization of information available and physician credentials. Regenerative medicine clinics commonly offered stem cell therapy, but introduced platelet rich plasma (PRP) and prolotherapy as regenerative therapies.
PRP and Prolotherapy are individual treatments that were even suggested and used in combination with stem cell therapies. Prolotherapy predates PRP as a chemical irritant therapy originally used to sclerose tissues. Prolotherapy is meant to stimulate platelet derived growth factors release to improve tissue healing response. Prolotherapy shows negligible efficacy improvements over corticosteroids, but may have underlying side effects from being an irritant. PRP is a more modern therapy for improved healing. Speculations state initial use was in an open heart surgery to improve healing post-surgery. PRP is created via centrifugation of patient blood to isolate growth factors by removing serum and other biological components to increase platelet concentration. PRP is comparable to corticosteroid injections in efficacy, but as an autologous application, there are no side effects making it more advantageous. Growth factors induce healing response and reduce inflammation. Growth factors stimulate cell growth, proliferation, differentiation, and stimulate cellular response mechanism such as angiogenesis and mitogenesis. The growth factor stimulation of PRP and prolotherapy both assist stem cell proliferation. Additional research is needed to determine differential capacity to ensure multipotent stem cells regenerate the correct cell type from the increased differential capacity offered by growth factor recruitment. The application of combination therapy for stem cells is unsubstantiated and applications violate FDA ‘minimal manipulation’ guidelines.
ContributorsKrum, Logan (Author) / Frow, Emma (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135371-Thumbnail Image.png
Description
Almost every form of cancer deregulates the expression and activity of anabolic glycosyltransferase (GT) enzymes, which incorporate particular monosaccharides in a donor acceptor as well as linkage- and anomer-specific manner to assemble complex and diverse glycans that significantly affect numerous cellular events, including tumorigenesis and metastasis. Because glycosylation is not

Almost every form of cancer deregulates the expression and activity of anabolic glycosyltransferase (GT) enzymes, which incorporate particular monosaccharides in a donor acceptor as well as linkage- and anomer-specific manner to assemble complex and diverse glycans that significantly affect numerous cellular events, including tumorigenesis and metastasis. Because glycosylation is not template-driven, GT deregulation yields heterogeneous arrays of aberrant intact glycan products, some in undetectable quantities in clinical bio-fluids (e.g., blood plasma). Numerous glycan features (e.g., 6 sialylation, β-1,6-branching, and core fucosylation) stem from approximately 25 glycan “nodes:” unique linkage specific monosaccharides at particular glycan branch points that collectively confer distinguishing features upon glycan products. For each node, changes in normalized abundance (Figure 1) may serve as nearly 1:1 surrogate measure of activity for culpable GTs and may correlate with particular stages of carcinogenesis. Complementary to traditional top down glycomics, the novel bottom-up technique applied herein condenses each glycan node and feature into a single analytical signal, quantified by two GC-MS instruments: GCT (time-of-flight analyzer) and GCMSD (transmission quadrupole analyzers). Bottom-up analysis of stage 3 and 4 breast cancer cases revealed better overall precision for GCMSD yet comparable clinical performance of both GC MS instruments and identified two downregulated glycan nodes as excellent breast cancer biomarker candidates: t-Gal and 4,6-GlcNAc (ROC AUC ≈ 0.80, p < 0.05). Resulting from the activity of multiple GTs, t-Gal had the highest ROC AUC (0.88) and lowest ROC p‑value (0.001) among all analyzed nodes. Representing core-fucosylation, glycan node 4,6-GlcNAc is a nearly 1:1 molecular surrogate for the activity of α-(1,6)-fucosyltransferase—a potential target for cancer therapy. To validate these results, future projects can analyze larger sample sets, find correlations between breast cancer stage and changes in t-Gal and 4,6-GlcNAc levels, gauge the specificity of these nodes for breast cancer and their potential role in other cancer types, and develop clinical tests for reliable breast cancer diagnosis and treatment monitoring based on t-Gal and 4,6-GlcNAc.
ContributorsZaare, Sahba (Author) / Borges, Chad (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135297-Thumbnail Image.png
Description
Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live

Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live cells over a longer period of time. As such, there is a need for a live-cell sensor that can detect chromatin state changes. The Chromometer is a transgenic chromatin state sensor designed to better understand human cell fate and the chromatin changes that occur. HOXD11.12, a DNA sequence that attracts repressive Polycomb group (PCG) proteins, was placed upstream of a core promoter-driven fluorescent reporter (AmCyan fluorescent protein, CFP) to link chromatin repression to a CFP signal. The transgene was stably inserted at an ectopic site in U2-OS (osteosarcoma) cells. Expression of CFP should reflect the epigenetic state at the HOXD locus, where several genes are regulated by Polycomb to control cell differentiation. U2-OS cells were transfected with the transgene and grown under selective pressure. Twelve colonies were identified as having integrated parts from the transgene into their genomes. PCR testing verified 2 cell lines that contain the complete transgene. Flow cytometry indicated mono-modal and bimodal populations in all transgenic cell colonies. Further research must be done to determine the effectiveness of this device as a sensor for live cell state change detection.
ContributorsBarclay, David (Co-author) / Simper, Jan (Co-author) / Haynes, Karmella (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134054-Thumbnail Image.png
Description
Cases of heroin use and overdose are on the rise in the United States which has created what some call a public health crisis. Previous studies have investigated the beneficial effect of social interaction recovering addicts, and in animal models of addiction, social interaction can prevent or reverse the conditioned

Cases of heroin use and overdose are on the rise in the United States which has created what some call a public health crisis. Previous studies have investigated the beneficial effect of social interaction recovering addicts, and in animal models of addiction, social interaction can prevent or reverse the conditioned rewarding effects of cocaine. This study sought to determine if social interaction would prevent or diminish a conditioned preference for a heroin-paired context. Following establishment of baseline place preference, adult male Sprague-Dawley rats underwent once daily conditioning with either saline, heroin (1 mg/kg), or the animal's cage-mate for a total of 8 conditioning sessions. Assessment of post-conditioning place preference revealed that both the heroin injections and the presence of the cage-mate produced a place preference . In contrast to the findings of previous studies using cocaine as the conditioning drug, it was determined that rats preferred the heroin-paired context over that paired with the cage-mate.. These findings suggest that the protective effects of social interaction found in prior studies using cocaine as the conditioning drug may not extend to opiates, perhaps a result of stronger contextual conditioning and/or rewarding effects of this class of abused drugs.
ContributorsMarble, Krista Lillian (Author) / Olive, M. Foster (Thesis director) / Tomek, Seven (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134278-Thumbnail Image.png
Description
The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for

The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for the differentiation of Embryonic Stem Cells (ESC) into neuronal precursors (Li z et al, 2006). ERK signaling has also shown to mediate Schwann cell myelination of the peripheral nervous system (PNS) as well as oligodendrocyte proliferation (Newbern et al, 2011). The class of developmental disorders that result in the dysregulation of RAS signaling are known as RASopathies. The molecular and cell-specific consequences of these various pathway mutations remain to be elucidated. While there is evidence for altered DNA transcription in RASopathies, there is little work examining the effects of the RASopathy-linked mutations on protein translation and post-translational modifications in vivo. RASopathies have phenotypic and molecular similarities to other disorders such as Fragile X Syndrome (FXS) and Tuberous Sclerosis (TSC) that show evidence of aberrant protein synthesis and affect related pathways. There are also well-defined downstream RAS pathway elements involved in translation. Additionally, aberrant corticospinal axon outgrowth has been observed in disease models of RASopathies (Xing et al, 2016). For these reasons, this present study examines a subset of proteins involved in translation and translational regulation in the context of RASopathy disease states. Results indicate that in both of the tested RASopathy model systems, there is altered mTOR expression. Additionally the loss of function model showed a decrease in rps6 activation. This data supports a role for the selective dysregulation of translational control elements in RASopathy models. This data also indicates that the primary candidate mechanism for control of altered translation in these modes is through the altered expression of mTOR.
ContributorsHilbert, Alexander Robert (Author) / Newbern, Jason (Thesis director) / Olive, M. Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05