Matching Items (141)
Description
Did the amount of media attention to the H1N1 flu or the information that the Centers for Disease Control (CDC) disseminates about the H1N1 flu, influence individuals' decisions to avoid public locations during the 2009-2010 H1N1 Influenza pandemic? I investigate this question using weekly-confirmed H1N1 cases from the CDC, the

Did the amount of media attention to the H1N1 flu or the information that the Centers for Disease Control (CDC) disseminates about the H1N1 flu, influence individuals' decisions to avoid public locations during the 2009-2010 H1N1 Influenza pandemic? I investigate this question using weekly-confirmed H1N1 cases from the CDC, the American Time Use Survey (ATUS), and the Google Trends weekly search volume index for certain key terms. I found that individuals did exhibit some avoidance behaviour during the flu pandemic in response to the CDC data, but not the measures of media attention. However, the magnitudes of these adjustments are small in comparison to other measures of avoidance behaviour, such as reduced time in public during extreme weather events.
ContributorsGunn, Quentin Lee (Author) / Kuminoff, Nicolai (Thesis director) / Abbott, Joshua (Committee member) / Fenichel, Eli (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2013-12
147527-Thumbnail Image.png
Description

Amid the fast-growing market of plant-based alternatives to conventional meat, there still lies uncertainty about consumers’ preferences for these new products. Through an online survey using a Becker-DeGroot-Marschak mechanism, I test the effect that environmental information provision has on consumers’ immediate and long-term willingness- to-pay for the Whopper and Impossible

Amid the fast-growing market of plant-based alternatives to conventional meat, there still lies uncertainty about consumers’ preferences for these new products. Through an online survey using a Becker-DeGroot-Marschak mechanism, I test the effect that environmental information provision has on consumers’ immediate and long-term willingness- to-pay for the Whopper and Impossible Whopper from Burger King. Respondents were randomly assigned to either a control group or a treatment group, and both received information on taste in an attempt to isolate the effect of environmental information. Results show that certain groups respond to the information differently. Specifically, consumers who care about climate change are affected greatly by environmental in- formation suggesting these “climate advocates” are not fully informed despite the efforts of Impossible Foods. Vegetarians and highly educated individuals have relatively stronger preferences for the plant-based burger, in line with previous studies. Results also show a lasting effect of information on WTP, suggesting little need for repeated interventions.

ContributorsStreff, Adam (Author) / Silverman, Daniel (Thesis director) / Kuminoff, Nicolai (Committee member) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148394-Thumbnail Image.png
Description

This study estimates the effect of district wealth on Arizona Empowerment Scholarship Account program participation using data from the Arizona Department of Education. We find that students from poor districts are not more likely to participate as school performance decreases.Conversely, those from wealthy districts do increase participation as school

This study estimates the effect of district wealth on Arizona Empowerment Scholarship Account program participation using data from the Arizona Department of Education. We find that students from poor districts are not more likely to participate as school performance decreases.Conversely, those from wealthy districts do increase participation as school performance decreases. We briefly try to explain the observed heterogeneity through survey results and commenting on the program design.

ContributorsAngel, Joseph Michael (Author) / Kostol, Andreas (Thesis director) / Kuminoff, Nicolai (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130393-Thumbnail Image.png
Description
Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative

Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as “economic epidemiology” or “epidemiological economics,” the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
Created2015-12-01
130394-Thumbnail Image.png
Description

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of diets that differ in elemental composition, stoichiometric theory can inform predictions about dietary effects on excretion ratios.
We conducted a meta-analysis to test the effects of diet elemental composition on consumption and nutrient excretion by fish. We examined the relationship between consumption rate and diet N : P across all laboratory studies and calculated effect sizes for each excretion metric to test for significant effects.
Consumption rate of N, but not P, was significantly negatively affected by diet N : P. Effect sizes of diet elemental composition on consumption-specific excretion N, P and N : P in laboratory studies were all significantly different from 0, but effect size for raw excretion N : P was not significantly different from zero in laboratory or field surveys.
Our results highlight the importance of having a mechanistic understanding of the drivers of consumer excretion rates and ratios. We suggest that more research is needed on how consumption and assimilation efficiency vary with N : P and in natural ecosystems in order to further understand mechanistic processes in consumer-driven nutrient recycling.

ContributorsMoody, Eric (Author) / Corman, Jessica (Author) / Elser, James (Author) / Sabo, John (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-03-01
130400-Thumbnail Image.png
Description
Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily

Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily rare phenotypes. The latter may result in over-representation of individuals who may participate in resource utilization patterns that can lead to over-exploitation, exhaustion, and, ultimately, collapse of both the resource and the population that depends on it. Here, we aim to identify regimes that can signal whether a consumer–resource system is capable of supporting viable degrees of heterogeneity. The framework used here is an expansion of a previously introduced consumer–resource type system of a population of individuals classified by their resource consumption. Application of the Reduction Theorem to the system enables us to evaluate the health of the system through tracking both the mean value of the parameter of resource (over)consumption, and the population variance, as both change over time. The article concludes with a discussion that highlights applicability of the proposed system to investigation of systems that are affected by particularly devastating overly adapted populations, namely cancerous cells. Potential intervention approaches for system management are discussed in the context of cancer therapies.
Created2015-02-01
130330-Thumbnail Image.png
Description
Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.
Created2016-10-25
130333-Thumbnail Image.png
Description
The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done

The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.
ContributorsYu, Qiang (Author) / Wu, Honghui (Author) / He, Nianpeng (Author) / Lu, Xiaotao (Author) / Wang, Zhiping (Author) / Elser, James (Author) / Wu, Jianguo (Author) / Han, Xingguo (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2012-03-13
130345-Thumbnail Image.png
Description
Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a

Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.
ContributorsZhang, Zijia (Author) / Elser, James (Author) / Cease, Arianne (Author) / Zhang, Ximei (Author) / Yu, Qiang (Author) / Han, Xingguo (Author) / Zhang, Guangming (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2014-08-04
130426-Thumbnail Image.png
Description
A large fraction of the world grasslands and savannas are undergoing a rapid shift from herbaceous to woody-plant dominance. This land-cover change is expected to lead to a loss in livestock production (LP), but the impacts of woody-plant encroachment on this crucial ecosystem service have not been assessed. We evaluate

A large fraction of the world grasslands and savannas are undergoing a rapid shift from herbaceous to woody-plant dominance. This land-cover change is expected to lead to a loss in livestock production (LP), but the impacts of woody-plant encroachment on this crucial ecosystem service have not been assessed. We evaluate how tree cover (TC) has affected LP at large spatial scales in rangelands of contrasting social–economic characteristics in the United States and Argentina. Our models indicate that in areas of high productivity, a 1% increase in TC results in a reduction in LP ranging from 0.6 to 1.6 reproductive cows (Rc) per km[superscript 2]. Mean LP in the United States is 27 Rc per km[superscript 2], so a 1% increase in TC results in a 2.5% decrease in mean LP. This effect is large considering that woody-plant cover has been described as increasing at 0.5% to 2% per y. On the contrary, in areas of low productivity, increased TC had a positive effect on LP. Our results also show that ecological factors account for a larger fraction of LP variability in Argentinean than in US rangelands. Differences in the relative importance of ecological versus nonecological drivers of LP in Argentina and the United States suggest that the valuation of ecosystem services between these two rangelands might be different. Current management strategies in Argentina are likely designed to maximize LP for various reasons we are unable to explore in this effort, whereas land managers in the United States may be optimizing multiple ecosystem services, including conservation or recreation, alongside LP.
Created2014-09-02