Matching Items (155)
Description
The Phoenix-Metro area currently has problems with its transportation systems. Over-crowded and congested freeways have slowed travel times within the area. Express bus transportation and the existence of "High Occupancy" lanes have failed to solve the congestion problem. The light rail system is limited to those within a certain distance

The Phoenix-Metro area currently has problems with its transportation systems. Over-crowded and congested freeways have slowed travel times within the area. Express bus transportation and the existence of "High Occupancy" lanes have failed to solve the congestion problem. The light rail system is limited to those within a certain distance from the line, and even the light rail is either too slow or too infrequent for a commuter to utilize it effectively. To add to the issue, Phoenix is continuing to expand outward instead of increasing population density within the city, therefore increasing the time it takes to travel to downtown Phoenix, which is the center of economic activity. The people of Phoenix and its surrounding areas are finding that driving themselves to work is just as cost-effective and less time consuming than taking public transportation. Phoenix needs a cost-effective solution to work in co- existence with improvements in local public transportation that will allow citizens to travel to their destination in just as much time, or less time, than travelling by personal vehicle.
ContributorsSerfilippi, Jon (Author) / Ariaratnam, Samuel (Thesis director) / Pendyala, Ram (Committee member) / Pembroke, Jim (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137835-Thumbnail Image.png
Description
Electrospun nanofibers can be prepared from various kinds of inorganic substances by electro-spinning techniques. They have great potential in many applications including super capacitors, lithium ion batteries, filtration, catalyst and enzyme carriers, and sensors [1]. The traditional way to produce electrospun nanofibers is needle based electro-spinning [1]. However, electrospun nanofibers

Electrospun nanofibers can be prepared from various kinds of inorganic substances by electro-spinning techniques. They have great potential in many applications including super capacitors, lithium ion batteries, filtration, catalyst and enzyme carriers, and sensors [1]. The traditional way to produce electrospun nanofibers is needle based electro-spinning [1]. However, electrospun nanofibers have not been widely used in practice because of low nanofiber production rates. One way to largely increase the electro-spinning productivity is needleless electro-spinning. In 2005, Jirsak et al. patented a rotating roller fiber generator for the mass production of nanofibers [2]. Elmarco Corporation commercialized this technique to manufacture nanofiber equipment for the production of all sorts of organic and inorganic nanofibers, and named it "NanospiderTM". For this project, my goal is to build a needleless electro-spinner to produce nanofibers as the separator of lithium ion batteries. The model of this project is based on the design of rotating roller fiber generator, and is adapted from a project at North Dakota State University in 2011 [3].
ContributorsQiao, Guanhao (Author) / Yu, Hongyu (Thesis director) / Jiang, Hanqing (Committee member) / Goryll, Michael (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137415-Thumbnail Image.png
Description
The following Student Sustainability Consultant's Portfolio was created with the intention of being duplicated and utilized by Arizona State University (ASU) students to build their own Portfolio and to help prepare them for success after graduation. Student Consultants in GreenLight Solutions (GLS) are in a unique position to prepare themselves

The following Student Sustainability Consultant's Portfolio was created with the intention of being duplicated and utilized by Arizona State University (ASU) students to build their own Portfolio and to help prepare them for success after graduation. Student Consultants in GreenLight Solutions (GLS) are in a unique position to prepare themselves to create value for organizations while in school, and then continue to after graduation. When I enrolled in the School of Sustainability as an undergraduate transfer student I heard some constructive criticism from graduates of the school. Those students shared that while they had attained a great theoretical understanding of the science of sustainability, they lacked the ability to apply their knowledge in a practical way. They were struggling with finding work in their field because they could not communicate to employers how their knowledge was useful. They did not know how to apply their sustainability knowledge to create value for an organization. I did not want to have that same problem when I graduated. Enter GreenLight Solutions.
ContributorsKeleher, Kevin Robert (Author) / Schoon, Michael (Thesis director) / Basile, George (Committee member) / Buch, Rajesh (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Department of Supply Chain Management (Contributor)
Created2013-12
137475-Thumbnail Image.png
Description
My project is an examination of the process ASU Tempe campus took to institute an organics collection program. Working from a sustainability science perspective I demonstrate the structural and logistical barriers faced during program creation and expansion. My examination lead to the creation of a manual designed as a tool

My project is an examination of the process ASU Tempe campus took to institute an organics collection program. Working from a sustainability science perspective I demonstrate the structural and logistical barriers faced during program creation and expansion. My examination lead to the creation of a manual designed as a tool for other organizations in which I document ASU's process and provide information on key steps and procedures necessary to implement a unique organics collection program.
ContributorsSchumacher, Katherine Marie (Author) / Schoon, Michael (Thesis director) / Brundiers, Katja (Committee member) / Levine, Alana (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Sustainability (Contributor)
Created2013-05
Description

This research paper assesses the effectiveness of a remote garden-based learning curriculum in teaching elementary students’ basic systems thinking concepts. Five remote lessons were designed, covering different garden topics, and in order to integrate systems thinking concepts, the Systems Thinking Hierarchical Model was used. This model includes eight emergent characteristics

This research paper assesses the effectiveness of a remote garden-based learning curriculum in teaching elementary students’ basic systems thinking concepts. Five remote lessons were designed, covering different garden topics, and in order to integrate systems thinking concepts, the Systems Thinking Hierarchical Model was used. This model includes eight emergent characteristics of systems thinking necessary for developing systems thinking competency. Five students were given the remote garden-based learning lessons. Student work was evaluated for systems thinking understanding and student outcomes were compared to anticipated learning outcomes. Results suggest that elementary students are able to understand basic systems thinking concepts because student work met anticipated outcomes for four systems thinking characteristics and exceeded anticipated outcomes for one characteristic. These results are significant because they further confirm that elementary-aged students do have the ability to understand systems thinking and they contribute to a growing movement to integrate sustainability education into elementary curriculum.

ContributorsDussault, Ashley (Author) / Weinberg, Andrea (Thesis director) / Schoon, Michael (Committee member) / School of Sustainability (Contributor) / Division of Teacher Preparation (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141468-Thumbnail Image.png
Description

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that are more specific to the archaeological cases: i) societal choices are influenced by robustness–vulnerability trade-offs, ii) there is interplay between robustness–vulnerability trade-offs and robustness–performance trade-offs, iii) societies often get locked in to particular strategies, and iv) multiple positive feedbacks escalate the perceived cost of societal change. We then discuss whether these lock-in traps can be prevented or whether the risks associated with them can be mitigated. We conclude by highlighting how these long-term historical studies can help us to understand current society, societal practices, and the nexus between ecology and society.

ContributorsSchoon, Michael (Author) / Fabricius, Christo (Author) / Anderies, John (Author) / Nelson, Margaret (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011
130393-Thumbnail Image.png
Description
Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative

Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as “economic epidemiology” or “epidemiological economics,” the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
Created2015-12-01
130394-Thumbnail Image.png
Description

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of diets that differ in elemental composition, stoichiometric theory can inform predictions about dietary effects on excretion ratios.
We conducted a meta-analysis to test the effects of diet elemental composition on consumption and nutrient excretion by fish. We examined the relationship between consumption rate and diet N : P across all laboratory studies and calculated effect sizes for each excretion metric to test for significant effects.
Consumption rate of N, but not P, was significantly negatively affected by diet N : P. Effect sizes of diet elemental composition on consumption-specific excretion N, P and N : P in laboratory studies were all significantly different from 0, but effect size for raw excretion N : P was not significantly different from zero in laboratory or field surveys.
Our results highlight the importance of having a mechanistic understanding of the drivers of consumer excretion rates and ratios. We suggest that more research is needed on how consumption and assimilation efficiency vary with N : P and in natural ecosystems in order to further understand mechanistic processes in consumer-driven nutrient recycling.

ContributorsMoody, Eric (Author) / Corman, Jessica (Author) / Elser, James (Author) / Sabo, John (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-03-01
130400-Thumbnail Image.png
Description
Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily

Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily rare phenotypes. The latter may result in over-representation of individuals who may participate in resource utilization patterns that can lead to over-exploitation, exhaustion, and, ultimately, collapse of both the resource and the population that depends on it. Here, we aim to identify regimes that can signal whether a consumer–resource system is capable of supporting viable degrees of heterogeneity. The framework used here is an expansion of a previously introduced consumer–resource type system of a population of individuals classified by their resource consumption. Application of the Reduction Theorem to the system enables us to evaluate the health of the system through tracking both the mean value of the parameter of resource (over)consumption, and the population variance, as both change over time. The article concludes with a discussion that highlights applicability of the proposed system to investigation of systems that are affected by particularly devastating overly adapted populations, namely cancerous cells. Potential intervention approaches for system management are discussed in the context of cancer therapies.
Created2015-02-01
130330-Thumbnail Image.png
Description
Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.
Created2016-10-25