Matching Items (39)
130850-Thumbnail Image.png
Description

TAM19B-7 is the largest, unmelted fine-grained micrometeorite found to date. It has carbonaceous chondritic origins, but the oxygen isotopic composition does not match any known parent bodies. Additionally, carbon-bearing matter and isotopic composition has been extensively characterized in meteorites, but this work has not been done yet for micrometeorites.

TAM19B-7 is the largest, unmelted fine-grained micrometeorite found to date. It has carbonaceous chondritic origins, but the oxygen isotopic composition does not match any known parent bodies. Additionally, carbon-bearing matter and isotopic composition has been extensively characterized in meteorites, but this work has not been done yet for micrometeorites. Using the NanoSIMS 50 L instrument, the bulk δ13C for TAM19B-7 was found to be 3 + 8‰, and four anomalous spots were identified with δ13C values of 12.9‰, 16.8‰, 32.7‰, and -27.1‰.

ContributorsFroh, Victoria (Author) / Bose, Maitrayee (Thesis director) / Williams, Lynda (Committee member) / School of Earth and Space Exploration (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130860-Thumbnail Image.png
Description

We present the isotope yields of two post-explosion, three-dimensional 15 M_sol core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of presolar SiC stardust. We find that material from the interior of a core-collapse supernova can

We present the isotope yields of two post-explosion, three-dimensional 15 M_sol core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of presolar SiC stardust. We find that material from the interior of a core-collapse supernova can form a rare subset of SiC stardust, called SiC D grains, characterized by enrichments of the isotopes 13C and 15N. The innermost material of these core-collapse supernovae is operating in the neutrino-driven regime and undergoes rapid proton capture early in the explosion, providing these isotopes which are not present in such large abundances in other stardust grains of supernova origin.

ContributorsSchulte, Jack (Author) / Bose, Maitrayee (Thesis director) / Foy, Joseph (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
134256-Thumbnail Image.png
Description
This thesis examines Care Not Cash, a welfare reform measure that replaced traditional cash General Assistance program payments for homeless persons in San Francisco with in-kind social services. Unlike most welfare reform measures, proponents framed Care Not Cash as a progressive policy, aimed at expanding social services and government care

This thesis examines Care Not Cash, a welfare reform measure that replaced traditional cash General Assistance program payments for homeless persons in San Francisco with in-kind social services. Unlike most welfare reform measures, proponents framed Care Not Cash as a progressive policy, aimed at expanding social services and government care for this vulnerable population. Drawing on primary and secondary documents, as well as interviews with homelessness policy experts, this thesis examines the historical and political success of Care Not Cash, and explores the potential need for implementation of a similar program in Phoenix, Arizona.
ContributorsMcCutcheon, Zachary Ryan (Author) / Lucio, Joanna (Thesis director) / Williams, David (Committee member) / Bretts-Jamison, Jake (Committee member) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
171746-Thumbnail Image.png
Description
Subsolidus convection in the mantle of Earth is the driving mechanism behind plate tectonics and provides a central framework linking geophysical, geochemical, petrological, hydrological, and biological processes within the system. Seismic observations have revealed mantle heterogeneities in wide-ranging scales from less than tens of to thousands of kilometers. Understanding the

Subsolidus convection in the mantle of Earth is the driving mechanism behind plate tectonics and provides a central framework linking geophysical, geochemical, petrological, hydrological, and biological processes within the system. Seismic observations have revealed mantle heterogeneities in wide-ranging scales from less than tens of to thousands of kilometers. Understanding the origins and dynamics of these anomalies is critical to advance our knowledge on how mantle convection operates and coevolves with the surface system. This dissertation attempts to constrain the past, present and future of mantle dynamics with lines of evidence from seismology, geodynamics, petrology, geochemistry, and astrophysics. Above Earth’s core, two continent-sized large low shear velocity provinces (LLSVPs) beneath Africa and the Pacific Ocean were seismically detected decades ago. Yet their origin, composition, detailed morphology and influence over mantle convection remain elusive. First, I propose the two LLSVPs may represent the mantle remnants of the Moon-forming impactor Theia. I show that the mantle of Theia is intrinsically denser than Earth’s mantle and would have sunk and accumulated into LLSVP-like structures in the deepest mantle after 4.5 billion years. Second, I examined the maximum height of the two LLSVPs and determined that the African LLSVP is ~1,000 km higher than the Pacific counterpart. Using geodynamic simulations, I find the height of a stable LLSVP is mainly controlled by its density and the ambient mantle viscosity. With ~1,000 numerical experiments, I conclude that the origin of the great height difference between the LLSVPs is that the African LLSVP is less dense, and thus less stable than the Pacific LLSVP. Next, I numerically identified another dynamic scenario accounting for the vastly different height of the two LLSVPs, which is caused by catastrophic sinking of accumulated subducted slabs at the 660-km boundary. Last, targeting one ancient carbonatite above the African LLSVP, I show that lithium isotopes in humite measured by nanoscale secondary ion mass spectrometry was able to uncover the signature of a subducted oceanic crust in its magma source, which may return from the interior to the surface by mantle plumes.
ContributorsYuan, Qian (Author) / Li, Mingming (Thesis advisor) / Garnero, Edward (Committee member) / Shim, Sang-Heon (Committee member) / Hervig, Richard (Committee member) / Bose, Maitrayee (Committee member) / Arizona State University (Publisher)
Created2022
161939-Thumbnail Image.png
Description
Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.
ContributorsVora, Kevin Jatin (Author) / Zhang, Yu (Thesis advisor) / Yang, Yezhou (Committee member) / Praharaj, Sarbeswar (Committee member) / Arizona State University (Publisher)
Created2021
189386-Thumbnail Image.png
Description
Space weathering of planetary surfaces is a complex process involving many mechanisms that work independently over different timescales. This research aims to address outstanding questions related to solar wind rim formation on space weathered regolith and tests a new hypothesis that dielectric breakdown plays an important role in the optical

Space weathering of planetary surfaces is a complex process involving many mechanisms that work independently over different timescales. This research aims to address outstanding questions related to solar wind rim formation on space weathered regolith and tests a new hypothesis that dielectric breakdown plays an important role in the optical maturation of lunar regolith. The purpose of this work is to highlight the limitations imposed by laboratory equipment to accurately simulate the solar wind’s effects on regolith and to provide physical context for the possible contributions of dielectric breakdown to space weathering. Terrestrial and lunar samples were experimentally irradiated and damage was characterized using electron microscopy techniques. Low-fluence proton irradiation produced differential weathering in a lunar mare basalt, with radiation damage on some phases being inconsistent with that found in the natural lunar environment. Dielectric breakdown of silicates revealed two electrical processes that produce characteristic surface and subsurface damage, in addition to amorphous rims. The results of this research highlight experimental parameters that if ignored, can significantly affect the results and interpretations of simulated solar wind weathering, and provides a framework for advancing space weathering research through experimental studies.
ContributorsShusterman, Morgan (Author) / Robinson, Mark S (Thesis advisor) / Sharp, Thomas G (Thesis advisor) / Hibbits, Charles (Committee member) / Bose, Maitrayee (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2023
171375-Thumbnail Image.png
Description
Brown dwarfs are a unique class of object which span the range between the lowest mass stars, and highest mass planets. New insights into the physics and chemistry of brown dwarfs comes from the comparison between spectroscopic observations, and theoretical atmospheric models. In this thesis, I present a uniform atmospheric

Brown dwarfs are a unique class of object which span the range between the lowest mass stars, and highest mass planets. New insights into the physics and chemistry of brown dwarfs comes from the comparison between spectroscopic observations, and theoretical atmospheric models. In this thesis, I present a uniform atmospheric retrieval analysis of the coolest Y, and late-T spectral type brown dwarfs using the CaltecH Inverse ModEling and Retrieval Algorithms (CHIMERA). In doing so, I develop a foundational dataset of retrieved atmospheric parameters including: molecular abundances, thermal structures, evolutionary parameters, and cloud properties for 61 different brown dwarfs. Comparisons to other modeling techniques and theoretical expectations from the James Webb Space Telescope (JWST) are made. Finally, I describe the techniques used to improve CHIMERA to run on Graphical Processing Units (GPUs), which directly enabled the creation of this large dataset.
ContributorsZalesky, Joseph (Author) / Line, Michael R (Thesis advisor) / Patience, Jennifer (Committee member) / Groppi, Christopher (Committee member) / Young, Patrick (Committee member) / Bose, Maitrayee (Committee member) / Arizona State University (Publisher)
Created2022
Description

Most asteroids originated in larger parent bodies that underwent accretion and heating during the first few million years of the solar system. We investigated the parent body of S-type asteroid 25143 Itokawa by developing a computational model which can approximate the thermal evolution of an early solar system body. We

Most asteroids originated in larger parent bodies that underwent accretion and heating during the first few million years of the solar system. We investigated the parent body of S-type asteroid 25143 Itokawa by developing a computational model which can approximate the thermal evolution of an early solar system body. We compared known constraints on Itokawa’s thermal history to simulations of its parent body and constrained its time of formation to between 1.6 and 2.5 million years after the beginning of the solar system, though certain details could allow for even earlier or later formation. These results stress the importance of precise data required of the material properties of asteroids and meteorites to place better constraints on the histories of their parent bodies. Additional mathematical and computational details are discussed, and the full code and data is made available online.

ContributorsHallstrom, Jonas (Author) / Bose, Maitrayee (Thesis director) / Beckstein, Oliver (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / Materials Science and Engineering Program (Contributor)
Created2023-05
168403-Thumbnail Image.png
Description
Characterizing the surface mineralogy of asteroids is critical to constraining their formation history and provides insight into the processes of planetary formation. One method of determining the surface mineralogy of asteroids is comparison of their visible to near-infrared reflectance (VNIR) spectra with laboratory spectra from meteorites and minerals. Subsequent in-situ

Characterizing the surface mineralogy of asteroids is critical to constraining their formation history and provides insight into the processes of planetary formation. One method of determining the surface mineralogy of asteroids is comparison of their visible to near-infrared reflectance (VNIR) spectra with laboratory spectra from meteorites and minerals. Subsequent in-situ investigation of these asteroids by spacecraft can supplement or supersede interpretations derived from Earth-based observations.I investigated a suite of aubrites, sulfide minerals, and metal-rich chondrites in a variety of forms (hand samples, powders, and slabs) to identify similarities with ‘spectrally featureless’ asteroids. I collected VNIR spectra and powder X-ray diffraction patterns of these samples and compared their overall reflectance and spectral slope with X-complex and T-, L-, and D-type asteroid spectra. The Psyche Mission will orbit asteroid (16) Psyche beginning in 2026. I provide a pre-flight assessment of the surface composition of Psyche by comparing spectra of Psyche to a large spectral library of possible surface analog materials (e.g., iron meteorites, mesosiderites, pallasites, sulfides, enstatite, ordinary, and metal-rich chondrites, endmember silicates, and mixtures of silicates, metal, and sulfides). Spectra of Psyche are generally consistent with iron meteorite powder, mixtures of iron meteorite powder and low-Fe, low-Ca pyroxene, sulfide minerals, and the CH/CBb chondrite Isheyevo. Next, I demonstrate some anticipated capabilities of the Psyche Multispectral Imager by comparing spectral parameters derived from Imager-convolved data to those from high resolution laboratory spectra. I offer preliminary strategies for classifying surface composition based on Imager filter ratios and overall reflectance. Last, I present an assessment of a benchtop, commercial-off-the-shelf (COTS) version of the Psyche Imager. The COTS Imager uses the same model CCD and a similar f-number commercial camera lens. I measured the gain, full well, linearity, read noise, quantum efficiency, and modulation transfer function to compare with eventual calibration data from the flight Imager. I validate the results of a radiometric model developed for the flight Imager with signal measurements from the COTS Imager. This work demonstrates that the COTS Imager is an effective testbed for validating Imager requirements and developing software and procedures for eventual calibration of the flight instrument.
ContributorsDibb, Steven (Author) / Bell, James (Thesis advisor) / Hardgrove, Craig (Committee member) / Garvie, Laurence (Committee member) / Elkins-Tanton, Linda (Committee member) / Bose, Maitrayee (Committee member) / Arizona State University (Publisher)
Created2021
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07