Matching Items (29)
131060-Thumbnail Image.png
Description
All modern multiplayer games are administered by having players connect to a remote server which is used to provide the ground truth for game state and player actions. This use of a central server provides a simple and intuitive way to administer game servers but also provides a single point

All modern multiplayer games are administered by having players connect to a remote server which is used to provide the ground truth for game state and player actions. This use of a central server provides a simple and intuitive way to administer game servers but also provides a single point of failure, as each server must be able to process all actions coming in and make a decision on whether the action is allowed or not, and how to update the game state accordingly. In cases where the server is under significant load, either from a very popular game release or from a deliberate attack, the game slows down or completely crashes. When there is a server action backlog, this can allow malicious actors to perform previously impossible actions. By instead using a decentralized platform, we can build a robust system that allows playing games through a P2P manner, filling in the need for central servers with consensus algorithms that provide the security on the part of a central authority. This project aims to show that a decentralized solution can be used to create a transparent, fully playable game of Monopoly with complex features that would be more scalable, reliable, and cost-effective compared to a centralized solution; meaning that games could be produced that costs pennies to publish and modify, taking seconds to propagate changes globally, and most importantly, cost nothing for upkeep. The codebase is available here: https://github.com/SirNeural/monopoly
ContributorsXu, Yun Hui (Author) / Boscovic, Dragan (Thesis director) / Foy, Joseph (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
Description
Proxy digital signatures are a subset of proxy cryptography that enable a peer, as a proxy delegator, to delegate signing privileges to another trusted peer, who becomes a proxy signer. The proxy signer then signs authorized transactions routed to it from the proxy delegator, to then send to the intended

Proxy digital signatures are a subset of proxy cryptography that enable a peer, as a proxy delegator, to delegate signing privileges to another trusted peer, who becomes a proxy signer. The proxy signer then signs authorized transactions routed to it from the proxy delegator, to then send to the intended third party on their behalf. This has great applications for computer networks where certain devices lack sufficient computational power to secure themselves and may rely on trusted and computationally more powerful peers, particularly within edge and fog networks. Although there are multiple proxy digital signature schemas that are circulated within cryptography-centric research papers, a practical software implementation has yet to be created. In this paper we describe Mengde Signatures: the first practical software implementation of proxy digital signatures. We expound upon the current architecture and process for how proxy signatures are implemented and function in a software engineering context. Although applicable to many different types of networks, we showcase the application of Mengde Signatures on an open source Proof-Of-Work Blockchain.
ContributorsMendoza, Francis (Author) / Boscovic, Dragan (Thesis director) / Zhao, Ming (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131600-Thumbnail Image.png
Description
This study aims to examine how the use of consensus-based transactions, smart contracts,and interoperability, provided by blockchain, may benefit the blood plasma industry. Plasmafractionation is the process of separating blood into multiple components to garner benefitsof increased lifespan, specialized allocation, and decreased waste, thereby creating a morecomplex and flexible supply

This study aims to examine how the use of consensus-based transactions, smart contracts,and interoperability, provided by blockchain, may benefit the blood plasma industry. Plasmafractionation is the process of separating blood into multiple components to garner benefitsof increased lifespan, specialized allocation, and decreased waste, thereby creating a morecomplex and flexible supply chain. Traditional applications of blockchain are developed onthe basis of decentralization—an infeasible policy for this sector due to stringent governmentregulations, such as HIPAA. However, the trusted nature of the relations in the plasmaindustry’s taxonomy proves private and centralized blockchains as the viable alternative.Implementations of blockchain are widely seen across pharmaceutical supply chains to combatthe falsification of possibly afflictive drugs. This system is more difficult to manage withblood, due to the quick perishable time, tracking/tracing of recycled components, and thenecessity of real-time metrics. Key attributes of private blockchains, such as digital identity,smart contracts, and authorized ledgers, may have the possibility of providing a significantpositive impact on the allocation and management functions of blood banks. Herein, we willidentify the economy and risks of the plasma ecosystem to extrapolate specific applications forthe use of blockchain technology. To understand tangible effects of blockchain, we developeda proof of concept application, aiming to emulate the business logic of modern plasma supplychain ecosystems adopting a blockchain data structure. The application testing simulates thesupply chain via agent-based modeling to analyze the scalability, benefits, and limitations ofblockchain for the plasma fractionation industry.
ContributorsVallabhaneni, Saipavan K (Author) / Boscovic, Dragan (Thesis director) / Kellso, James (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
In this paper I defend the argument that public reaction to news headlines correlates with the short-term price direction of Bitcoin. I collected a month's worth of Bitcoin data consisting of news headlines, tweets, and the price of the cryptocurrency. I fed this data into a Long Short-Term Memory Neural

In this paper I defend the argument that public reaction to news headlines correlates with the short-term price direction of Bitcoin. I collected a month's worth of Bitcoin data consisting of news headlines, tweets, and the price of the cryptocurrency. I fed this data into a Long Short-Term Memory Neural Network and built a model that predicted Bitcoin price for a new timeframe. The model correctly predicted 75% of test set price trends on 3.25 hour time intervals. This is higher than the 53.57% accuracy tested with a Bitcoin price model without sentiment data. I concluded public reaction to Bitcoin news headlines has an effect on the short-term price direction of the cryptocurrency. Investors can use my model to help them in their decision-making process when making short-term Bitcoin investment decisions.
ContributorsSteinberg, Sam (Author) / Boscovic, Dragan (Thesis director) / Davulcu, Hasan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133782-Thumbnail Image.png
Description
As we already know, fresh water is essential to human life as it sustains and replenishes our bodies. Water sustainability is clearly an important issue that need to be addressed in our world of growing demand and shrinking resources. The ASU Future H2O program seeks to make a difference in

As we already know, fresh water is essential to human life as it sustains and replenishes our bodies. Water sustainability is clearly an important issue that need to be addressed in our world of growing demand and shrinking resources. The ASU Future H2O program seeks to make a difference in the development of water sustainability programs by performing experiments that convert urine into reusable water. The goal is to make reusable water processes become inexpensive and easily accessible to local businesses. This promises a significant environmental impact. In order to make the process of development more efficient we can combine engineering technology with scientific experimentation. As an engineering student and an advocate of water sustainability, I have a chance to design the front-end platform that will use IoT to make the experimental process more accessible and effective. In this paper, I will document the entire process involved in the designing process and what I have learned.
ContributorsTran, Phung Thien (Author) / Boscovic, Dragan (Thesis director) / Boyer, Treavor (Committee member) / School of Earth and Space Exploration (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
168532-Thumbnail Image.png
Description
In this work, I propose a novel, unsupervised framework titled SATLAB, to label satellite images, given a classification task at hand. Existing models for satellite image classification such as DeepSAT and DeepSAT-V2 rely on deep learning models that are label-hungry and require a significant amount of training data. Since manual

In this work, I propose a novel, unsupervised framework titled SATLAB, to label satellite images, given a classification task at hand. Existing models for satellite image classification such as DeepSAT and DeepSAT-V2 rely on deep learning models that are label-hungry and require a significant amount of training data. Since manual curation of labels is expensive, I ensure that SATLAB requires zero training labels. SATLAB can work in conjunction with several generative and unsupervised machine learning models by allowing them to be seamlessly plugged into its architecture. I devise three operating modes for SATLAB - manual, semi-automatic and automatic which require varying levels of human intervention in creating the domain-specific labeling functions for each image that can be utilized by the candidate generative models such as Snorkel, as well as other unsupervised learners in SATLAB. Unlike existing supervised learning baselines which only extract textural features from satellite images, I support the extraction of both textural and geospatial features in SATLAB, and I empirically show that geospatial features enhance the classification F1-score by 33%. I build SATLAB on the top of Apache Sedona in order to leverage its rich set of spatial query processing operators for the extraction of geospatial features from satellite raster images. I evaluate SATLAB on a target binary classification task that distinguishes slum from non-slum areas, upon a repository of 100K satellite images captured by the Sentinel satellite program. My 5-Fold Cross Validation (CV) experiments show that SATLAB achieves competitive F1-scores (0.6) using 0% labeled data while the best baseline supervised learning baseline achieves 0.74 F1-score using 80% labeled data. I also show that Snorkel outperforms alternative generative and unsupervised candidate models that can be plugged into SATLAB by 33% to 71% w.r.t. F1-score and 3 times to 73 times w.r.t. latency. I also show that downstream classifiers trained using the labels generated by SATLAB are comparable in quality (0.63 F1) to their counterpart classifiers (0.74 F1) trained on manually curated labels.
ContributorsAggarwal, Shantanu (Author) / Sarwat, Mohamed (Thesis advisor) / Zou, Jia (Committee member) / Boscovic, Dragan (Committee member) / Arizona State University (Publisher)
Created2022
171864-Thumbnail Image.png
Description
Bitcoin (BTC) shares many characteristics with traditional stocks, but it is much more volatile since the cryptocurrency market is unregulated. The high volatility makes BTC a very high risk-high reward investment and predictive analysis can be very useful to obtain good returns and minimize risk. Taking Cocco et al. [1]

Bitcoin (BTC) shares many characteristics with traditional stocks, but it is much more volatile since the cryptocurrency market is unregulated. The high volatility makes BTC a very high risk-high reward investment and predictive analysis can be very useful to obtain good returns and minimize risk. Taking Cocco et al. [1] as the primary reference, this thesis tries to reproduce their findings by building two BTC price forecasting models, Long Short-Term Memory (LSTM) and Bayesian Neural Network (BNN), and finding that the Mean Absolute Percentage Error (MAPE) is lower for the initial BNN model in comparison to the initial LSTM model. In addition to forecasting the value of BTC, a metric called trend% is developed to gauge the models’ ability to capture the trend of how the price varies from one timestep to the next and used to compare the trend prediction performance. It is found that both initial models make random predictions for the trend. Improvements like removing the stochastic component from the data and forecasting returns as opposed to price values show that both models show comparable performance in terms of both MAPE and trend%. The thesis concludes by discussing the future work that can be done to potentially improve the above models. One of the possibilities mentioned is to use on-chain data from the BTC blockchain coupled with the real-world knowledge of BTC exchanges and feed this as input features to the models.
ContributorsMittal, Shivansh (Author) / Boscovic, Dragan (Thesis advisor) / Davulcu, Hasan (Committee member) / Candan, Kasim (Committee member) / Arizona State University (Publisher)
Created2022
Description

Through my work with the Arizona State University Blockchain Research Lab (BRL) and JennyCo, one of the first Healthcare Information (HCI) HIPAA - compliant decentralized exchanges, I have had the opportunity to explore a unique cross-section of some of the most up and coming DLTs including both DAGs and blockchains.

Through my work with the Arizona State University Blockchain Research Lab (BRL) and JennyCo, one of the first Healthcare Information (HCI) HIPAA - compliant decentralized exchanges, I have had the opportunity to explore a unique cross-section of some of the most up and coming DLTs including both DAGs and blockchains. During this research, four major technologies (including JennyCo’s own systems) presented themselves as prime candidates for the comparative analysis of two models for implementing JennyCo’s system architecture for the monetization of healthcare information exchanges (HIEs). These four identified technologies and their underlying mechanisms will be explored thoroughly throughout the course of this paper and are listed with brief definitions as follows: Polygon - “Polygon is a “layer two” or “sidechain” scaling solution that runs alongside the Ethereum blockchain. MATIC is the network’s native cryptocurrency, which is used for fees, staking, and more” [8]. Polygon is the scalable layer involved in the L2SP architecture. Ethereum - “Ethereum is a decentralized blockchain platform that establishes a peer-to-peer network that securely executes and verifies application code, called smart contracts.” [9] This foundational Layer-1 runs thousands of nodes and creates a unique decentralized ecosystem governed by turing complete automated programs. Ethereum is the foundational Layer involved in the L2SP. Constellation - A novel Layer-0 data-centric peer-to-peer network that utilizes the “Hypergraph Transfer Protocol or HGTP, a DLT known as a [DAG] protocol with a novel reputation-based consensus model called Proof of Reputable Observation (PRO). Hypergraph is a feeless decentralized network that supports the transfer of $DAG cryptocurrency.” [10] JennyCo Protocol - Acts as a HIPAA compliant decentralized HIE by allowing consumers, big businesses, and brands to access and exchange user health data on a secure, interoperable, and accessible platform via DLT. The JennyCo Protocol implements utility tokens to reward buyers and sellers for exchanging data. Its protocol nature comes from its DLT implementation which governs the functioning of on-chain actions (e.g. smart contracts). In this case, these actions consist of secure and transparent health data exchange and monetization to reconstitute data ownership to those who generate that data [11]. With the direct experience of working closely with multiple companies behind the technologies listed, I have been exposed to the benefits and deficits of each of these technologies and their corresponding approaches. In this paper, I will use my experience with these technologies and their frameworks to explore two distributed ledger architecture protocols in order to determine the more effective model for implementing JennycCo’s health data exchange. I will begin this paper with an exploration of blockchain and directed acyclic graph (DAG) technologies to better understand their innate architectures and features. I will then move to an in-depth look at layered protocols, and healthcare data in the form of EHRs. Additionally, I will address the main challenges EHRs and HIEs face to present a deeper understanding of the challenges JennyCo is attempting to address. Finally, I will demonstrate my hypothesis: the Hypergraph Transfer Protocol (HGTP) model by Constellation presents significant advantages in scalability, interoperability, and external data security over the Layer-2 Scalability Protocol (L2SP) used by Polygon and Ethereum in implementing the JennyCo protocol. This will be done through a thorough breakdown of each protocol along with an analysis of relevant criteria including but not limited to: security, interoperability, and scalability. In doing so, I hope to determine the best framework for running JennyCo’s HIE Protocol.

ContributorsVan Bussum, Alexander (Author) / Boscovic, Dragan (Thesis director) / Grando, Adela (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
161802-Thumbnail Image.png
Description
Rapid increases in the installed amounts of Distributed Energy Resources are forcing a paradigm shift to guarantee stability, security, and economics of power distribution systems. This dissertation explores these challenges and proposes solutions to enable higher penetrations of grid-edge devices. The thesis shows that integrating Graph Signal Processing with State

Rapid increases in the installed amounts of Distributed Energy Resources are forcing a paradigm shift to guarantee stability, security, and economics of power distribution systems. This dissertation explores these challenges and proposes solutions to enable higher penetrations of grid-edge devices. The thesis shows that integrating Graph Signal Processing with State Estimation formulation allows accurate estimation of voltage phasors for radial feeders under low-observability conditions using traditional measurements. Furthermore, the Optimal Power Flow formulation presented in this work can reduce the solution time of a bus injection-based convex relaxation formulation, as shown through numerical results. The enhanced real-time knowledge of the system state is leveraged to develop new approaches to cyber-security of a transactive energy market by introducing a blockchain-based Electron Volt Exchange framework that includes a distributed protocol for pricing and scheduling prosumers' production/consumption while keeping constraints and bids private. The distributed algorithm prevents power theft and false data injection by comparing prosumers' reported power exchanges to models of expected power exchanges using measurements from grid sensors to estimate system state. Necessary hardware security is described and integrated into underlying grid-edge devices to verify the provenance of messages to and from these devices. These preventive measures for securing energy transactions are accompanied by additional mitigation measures to maintain voltage stability in inverter-dominated networks by expressing local control actions through Lyapunov analysis to mitigate cyber-attack and generation intermittency effects. The proposed formulation is applicable as long as the Volt-Var and Volt-Watt curves of the inverters can be represented as Lipschitz constants. Simulation results demonstrate how smart inverters can mitigate voltage oscillations throughout the distribution network. Approaches are rigorously explored and validated using a combination of real distribution networks and synthetic test cases. Finally, to overcome the scarcity of real data to test distribution systems algorithms a framework is introduced to generate synthetic distribution feeders mapped to real geospatial topologies using available OpenStreetMap data. The methods illustrate how to create synthetic feeders across the entire ZIP Code, with minimal input data for any location. These stackable scientific findings conclude with a brief discussion of physical deployment opportunities to accelerate grid modernization efforts.
ContributorsSaha, Shammya Shananda (Author) / Johnson, Nathan (Thesis advisor) / Scaglione, Anna (Thesis advisor) / Arnold, Daniel (Committee member) / Boscovic, Dragan (Committee member) / Arizona State University (Publisher)
Created2021
164866-Thumbnail Image.png
Description

This project aims to mint NFT's on the Ethereum blockchain with upgraded functionality. This functionality helps user verifiability and increases a user's control over their NFT.

ContributorsHoppe, Aidan (Author) / Boscovic, Dragan (Thesis director) / Pesic, Sasa (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05