Matching Items (86)
Filtering by

Clear all filters

171311-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as

Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as well as caregivers to maintain appropriate glucose levels. The majority of T1D patients have antibodies to one or more antigens: insulin, IA-2, GAD65, and ZnT8. Although antibodies are detectable years before symptoms occur, the initiating factors and mechanisms of progression towards β-cell destruction are still not known. The search for new autoantibodies to elucidate the autoimmune process in diabetes has been slow, with proteome level screenings on native proteins only finding a few minor antigens. Post-translational modifications (PTM)—chemical changes that occur to the protein after translation is complete—are an unexplored way a self-protein could become immunogenic. This dissertation presents the first large sale screening of autoantibodies in T1D to nitrated proteins. The Contra Capture Protein Array (CCPA) allowed for fresh expression of hundreds of proteins that were captured on a secondary slide by tag-specific ligand and subsequent modification with peroxynitrite. The IgG and IgM humoral response of 48 newly diagnosed T1D subjects and 48 age-matched controls were screened against 1632 proteins highly or specifically expressed in pancreatic cells. Top targets at 95% specificity were confirmed with the same serum samples using rapid antigenic protein in situ display enzyme-linked immunosorbent assay (RAPID ELISA) a modified sandwich ELISA employing the same cell-free expression as the CCPA. For validation, 8 IgG and 5 IgM targets were evaluated with an independent serum sample set of 94 T1D subjects and 94 controls. The two best candidates at 90% specificity were estrogen receptor 1 (ESR1) and phosphatidylinositol 4-kinase type 2 beta (PI4K2B) which had sensitivities of 22% (p=.014) and 25% (p=.045), respectively. Receiver operating characteristic (ROC) analyses found an area under curve (AUC) of 0.6 for ESR1 and 0.58 for PI4K2B. These studies demonstrate the ability and value for high-throughput autoantibody screening to modified antigens and the frequency of Type 1 diabetes.
ContributorsHesterman, Jennifer (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Sweazea, Karen (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
Description

Plasticizers are plastic additives used to enhance the physical properties of plastic and are ubiquitous in the environment. A class of plasticizer compounds called phthalate esters that are not fully eliminated in wastewater treatment facilities are relevant to the ecological health of downstream ecosystems and urban areas due to their

Plasticizers are plastic additives used to enhance the physical properties of plastic and are ubiquitous in the environment. A class of plasticizer compounds called phthalate esters that are not fully eliminated in wastewater treatment facilities are relevant to the ecological health of downstream ecosystems and urban areas due to their ecotoxicity, tendency for soil accumulation, and the emerging concern about their effects on public health. However, plasticizer concentrations in a constructed wetland environment have rarely been studied in the United States, prompting the need for a method of plasticizer quantification in the Tres Rios Constructed Wetlands which are sustained by the effluent of the 91st Avenue Wastewater Treatment Plant in Phoenix, Arizona. The concentrations of four common plasticizer compounds (dimethyl: DMP, diethyl: DEP, di-n-butyl: DnBP, and bis(2-ethylhexyl): DEHP phthalate) at five sites across the wetland surface water were quantified using solid-phase extraction followed by gas chromatography coupled with mass spectrometry (GC/MS). The sampling period included four sample sets taken from March 2022 to September 2022, which gave temporal data in addition to spatial concentration data. Quantification and quality control were performed using internal standard calibration, replicate samples, and laboratory blanks. Higher molecular weight phthalates accumulated in the wetland surface water at significantly higher average concentrations than those of lower molecular weight at a 95% confidence level, ranging from 8 ng/L to 7349 ng/L and 4 ng/L to 27876 ng/L for DnBP and DEHP, respectively. Concentrations for dimethyl phthalate and diethyl phthalate were typically less than 50 ng/L and were often below the method detection limit. Average concentrations of DnBP and DEHP were significantly higher during periods of high temperatures and arid conditions. The spatial distribution of phthalates was analyzed. Most importantly, a method for successful ultra-trace quantification of plasticizers at Tres Rios was established. These results confirm the presence of plasticizers at Tres Rios and a significant seasonal increase in their surface water concentrations. The developed analytical procedure provides a solid foundation for the Wetlands Environmental Ecology Lab at ASU to further investigate plasticizers and contaminants of emerging concern and determine their ultimate fate through volatilization, sorption, photodegradation, hydrolysis, microbial biodegradation, and phytoremediation studies.

ContributorsStorey, Garrett (Author) / Herckes, Pierre (Thesis director) / Childers, Dan (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

There are limited methods and techniques to quantitatively assess protein content in single cells or small cell populations of tissues. The standard protein insulin was used to understand how potential changes in the preparation or co-crystallization process could improve sensitivity and limit of detection through matrix assisted laser desorption ionization

There are limited methods and techniques to quantitatively assess protein content in single cells or small cell populations of tissues. The standard protein insulin was used to understand how potential changes in the preparation or co-crystallization process could improve sensitivity and limit of detection through matrix assisted laser desorption ionization (MALDI) mass spectrometry analysis in Bruker’s Microflex LRF using polydimethylsiloxane (PDMS) reservoirs. In addition, initial imaging tests were performed on Bruker’s RapifleX MALDI Tissuetyper to determine the instrument’s imaging capabilities on proteins of interest through the use of a single layer “Christmas tree” microfluidic device, with the aim of applying a similar approach to future tissue samples. Data on 2µM insulin determined that a 95% laser power in the Microflex corresponded to 12-15% laser power in the RapifleX. Based on the experiments with insulin, the process of mixing insulin and saturated ɑ-Cyano-4-hydroxycinnamic acid (HCCA) matrix solvent in a 1:1 ratio using 10mM sodium phosphate buffer under area analysis is most optimized with a limit of detection value of 110 nM. With this information, the future aim is to apply this method to a double layer Christmas tree device in order to hopefully quantitatively analyze and image protein content in single or small cell populations.

ContributorsKow, Keegan (Author) / Ros, Alexandra (Thesis director) / Borges, Chad (Committee member) / Cruz-Villarreal, Jorvani (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

This thesis project is a first-grade curriculum that is tailored for schools with school gardens. The curriculum contains worksheets and activities for the students, making it easier for teachers to take care of the school garden while also playing a part in fighting food injustice. The curriculum has 4 subjects:

This thesis project is a first-grade curriculum that is tailored for schools with school gardens. The curriculum contains worksheets and activities for the students, making it easier for teachers to take care of the school garden while also playing a part in fighting food injustice. The curriculum has 4 subjects: Math, Language Arts, Science, and Nutrition Education.

ContributorsShah, Hirni (Author) / McGregor, Joan (Thesis director) / Lee, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Social Transformation (Contributor)
Created2023-05
Description

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive symptoms, and anxiety for midlife women with mobility impairments specifically. Overall, it was found that midlife women with mobility impairments experienced better sleep when they focused on health information podcasts in comparison to Tai Chi. Change in anxiety and depressive symptoms were negligible.

ContributorsRastkhiz, Tara (Author) / Carvallo, Joanna (Co-author) / Lee, Rebecca (Thesis director) / Rodney, Joseph (Committee member) / Santana, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
Description

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive

The purpose of this thesis is to determine whether Tai Chi Qigong or Health Information podcasts are more effective for improving mental health and sleep outcomes for midlife women with mobility impairments. No other studies have been done to investigate whether Tai Chi can be more effective for sleep, depressive symptoms, and anxiety for midlife women with mobility impairments specifically. Overall, it was found that midlife women with mobility impairments experienced better sleep when they focused on health information podcasts in comparison to Tai Chi. Change in anxiety and depressive symptoms were negligible.

ContributorsCarvallo, Joanna (Author) / Rastkhiz, Tara (Co-author) / Lee, Rebecca (Thesis director) / Joseph, Rodney (Committee member) / Santana, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
168356-Thumbnail Image.png
Description
Antibodies are the immunoglobulins which are secreted by the B cells after a microbial invasion. They are stable and stays in the serum for a long time which makes them an excellent biomarker for disease diagnosis. Inflammatory bowel disease is a type of autoimmune disease where the immune system mistakenly

Antibodies are the immunoglobulins which are secreted by the B cells after a microbial invasion. They are stable and stays in the serum for a long time which makes them an excellent biomarker for disease diagnosis. Inflammatory bowel disease is a type of autoimmune disease where the immune system mistakenly attacks the commensal bacteria and leads to inflammation. We studied antibody response of 100 Crohn’s disease (CD), 100 ulcerative colitis (UC) and 100 healthy controls against 1,173 bacterial and 397 viral proteins. We found some anti-bacterial antibodies higher in CD compared to controls while some antibodies lower in UC compared to controls. We were able to build biomarker panels with AUCs of 0.81, 0.87, and 0.82 distinguishing CD vs. control, UC vs. control, and CD vs. UC, respectively. Subgroup analysis based on the Montreal classification revealed that penetrating CD behavior (B3), colonic CD location (L2), and extensive UC (E3) exhibited highest antibody reactivity among all patients. We also wanted to study the reason for the presence of autoantibodies in the sera of healthy individuals. A meta-analysis of 9 independent biomarker study was performed to find 77 common autoantibodies shared by healthy individuals. There was no gender bias; however, the number of autoantibodies increased with age, plateauing around adolescence. Molecular mimicry likely contributed to the elicitation of a subset of these common autoantibodies as 21 common autoantigens had 7 or more ungapped amino acid matches with viral proteins. Intrinsic properties of protein like hydrophilicity, basicity, aromaticity, and flexibility were enriched for common autoantigens. Subcellular localization and tissue expression analysis indicated the sequestration of some autoantigens from circulating autoantibodies can explain the absence of autoimmunity in these healthy individuals.
ContributorsShome, Mahasish (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
168737-Thumbnail Image.png
Description
Transient protein-protein and protein-molecule interactions fluctuate between associated and dissociated states. They are widespread in nature and mediate most biological processes. These interactions are complex and are strongly influenced by factors such as concentration, structure, and environment. Understanding and utilizing these types of interactions is useful from both a fundamental

Transient protein-protein and protein-molecule interactions fluctuate between associated and dissociated states. They are widespread in nature and mediate most biological processes. These interactions are complex and are strongly influenced by factors such as concentration, structure, and environment. Understanding and utilizing these types of interactions is useful from both a fundamental and design perspective. In this dissertation, transient protein interactions are used as the sensing element of a biosensor for small molecule detection. This is done by using a transcription factor-small molecule pair that mediates the activation of a CRISPR/Cas12a complex. Activation of the Cas12a enzyme results in an amplified readout mechanism that is either fluorescence or paper based. This biosensor can successfully detect 9 different small molecules including antibiotics with a tuneable detection limit ranging from low µM to low nM. By combining protein and nucleic acid-based systems, this biosensor has the potential to report on almost any protein-molecule interaction, linking this to the intrinsic amplification that is possible when working with nucleic acid-based technologies. The second part of this dissertation focuses on understanding protein-molecule interactions at a more fundamental level, and, in so doing, exploring design rules required to generalize sensors like the ones described above. This is done by training a neural network algorithm with binding data from high density peptide micro arrays incubated with specific protein targets. Because the peptide sequences were chosen simply to evenly, though sparsely, represent all sequence space, the resulting network provides a comprehensive sequence/binding relationship for a given target protein. While past work had shown that this works well on the arrays, here I have explored how well the neural networks thus trained, predict sequence-dependent binding in the context of protein-protein and peptide-protein interactions. Amino acid sequences, either free in solution or embedded in protein structure, will display somewhat different binding properties than sequences affixed to the surface of a high-density array. However, the neural network trained on array sequences was able to both identify binding regions in between proteins and predict surface plasmon resonance-based binding propensities for peptides with statistically significant levels of accuracy.
ContributorsSwingle, Kirstie Lynn (Author) / Woodbury, Neal W (Thesis advisor) / Green, Alexander A (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2022
190-Thumbnail Image.png
Description

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a critical question is whether these experiences will result in changed behaviors and preferences in the long term. This paper presents initial findings on the likelihood of long-term changes in telework, daily travel, restaurant patronage, and air travel based on survey data collected from adults in the United States in Spring 2020. These data suggest that a sizable fraction of the increase in telework and decreases in both business air travel and restaurant patronage are likely here to stay. As for daily travel modes, public transit may not fully recover its pre-pandemic ridership levels, but many of our respondents are planning to bike and walk more than they used to. These data reflect the responses of a sample that is higher income and more highly educated than the US population. The response of these particular groups to the COVID-19 pandemic is perhaps especially important to understand, however, because their consumption patterns give them a large influence on many sectors of the economy.

Created2020-09-03