Matching Items (162)
132294-Thumbnail Image.png
Description
Microplastics are defined as small pieces of plastics that are less than five millimeters in size. These microplastics can vary in their appearance, are known to be harmful to aquatic life and can threaten life cycles of marine organisms because of their chemical make-up and the toxic additives used in

Microplastics are defined as small pieces of plastics that are less than five millimeters in size. These microplastics can vary in their appearance, are known to be harmful to aquatic life and can threaten life cycles of marine organisms because of their chemical make-up and the toxic additives used in their manufacture. Although small in size, it is hypothesized that microplastics can serve as an example of how human activities can alter ecosystems near and far. To investigate the implications and determine the potential impact of microplastics on a protected atoll’s ecosystems, red-footed booby (Sula sula) guano samples from six locations on Palmyra Atoll were acquired from North Carolina State University via The Nature Conservancy and were inspected for the presence of microplastics. Each of the guano samples were weighed and prepared via wet oxidation. Microplastic fibers were detected via stereoscope microscopy and analyzed for chemical composition via Raman spectroscopy. All six sampling locations within Palmyra Atoll contained microplastic fibers identified as polyethylene terephthalate, with North-South Causeway and Eastern Island having the highest average number of microplastic fibers found per gram of guano sample (n = 0.611). These data provide evidence that seabirds can serve as vectors for the spread of microplastic pollution. This research lends context to the widespread impact of plastic pollution and states possible implications of its presence in delicate ecosystems.
ContributorsAnderson, Alyssa Cerise (Author) / Lisenbee, Cayle (Thesis director) / Halden, Rolf (Committee member) / Rolsky, Charles (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131736-Thumbnail Image.png
Description
Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption

Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption of twelve narcotics within a collegiate setting from January 2018 to May 2018 at a Southwestern U.S. university. The present follow-up study was designed to identify potential changes in the consumption patterns of prescription and illicit drugs as the academic year progressed. Samples were collected from two sites that capture nearly 100% of campus-generated wastewater. Seven consecutive 24-hour composite raw wastewater samples were collected each month (n = 68) from both locations. The study identified the average consumption of select narcotics, in units of mg/day/1000 persons in the following order: cocaine (528 ± 266), heroin (404 ± 315), methylphenidate (343 ± 396), amphetamine (308 ±105), ecstasy (MDMA; 114 ± 198), oxycodone (57 ± 28), methadone (58 ± 73), and codeine (84 ± 40). The consumption of oxycodone, methadone, heroin, and cocaine were identified as statistically lower in the Spring 2018 semester compared to the Fall 2017. Universities may need to increase drug education for the fall semester to lower the consumption of drugs in that semester. Data from this research encompasses both human health and the built environment by evaluating public health through collection of municipal wastewater, allowing public health officials rapid and robust narcotic consumption data while maintaining the anonymity of the students, faculty, and staff.
ContributorsCarlson, Alyssa Rose (Author) / Halden, Rolf (Thesis director) / Gushgari, Adam (Committee member) / School of Human Evolution & Social Change (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131610-Thumbnail Image.png
Description

The combined use of methamphetamine and opioids has been reported to be on the rise throughout the United States (U.S.). However, our knowledge of this phenomenon is largely based upon reported overdoses and overdose-related deaths, law enforcement seizures, and drug treatment records; data that are often slow, restricted, and only

The combined use of methamphetamine and opioids has been reported to be on the rise throughout the United States (U.S.). However, our knowledge of this phenomenon is largely based upon reported overdoses and overdose-related deaths, law enforcement seizures, and drug treatment records; data that are often slow, restricted, and only track a portion of the population participating in drug consumption activities. As an alternative, wastewater-based epidemiology (WBE) has the capability to track licit and illicit drug trends within an entire community, at a low cost and in near real-time, while providing anonymity to those contributing to the sewer shed. In this study, wastewater was collected from two Midwestern U.S. cities (2017-2019) and analyzed for the prevalence of methamphetamine and the opioids oxycodone, codeine, fentanyl, tramadol, hydrocodone, and hydromorphone. Monthly 24-hour time-weighted composite samples (n = 48) from each city were analyzed using isotope dilution liquid chromatography tandem mass spectrometry. Results showed that methamphetamine and total opioid consumption (milligram morphine equivalents) in City 1 were strongly correlated only in 2017 (Spearman rank order correlation coefficient, ρ = 0.78), the relationship driven by fentanyl, hydrocodone, and hydromorphone. For City 2, methamphetamine and total opioid consumption were strongly positively correlated during the entire study (ρ = 0.54), with the correlations driven by hydrocodone and hydromorphone. In both cities, hydrocodone and hydromorphone mass loads were highly correlated, suggesting a parent and metabolite relationship. WBE provides important insights into licit and illicit drug consumption patterns in near real-time as they evolve; important information for community stakeholders in municipalities across the U.S.

ContributorsClick, Kathleen Grace (Author) / Halden, Rolf (Thesis director) / Gushgari, Adam (Committee member) / Driver, Erin (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131672-Thumbnail Image.png
Description
The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA

The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA cells and MRSA secreted proteins [culture filtrate proteins (CFPs)] as a complementary method of controlling MRSA infections. GPs have been synthesized with variable pore sizes (meso/macro scale) and further modified with stearic acid (SA) to increase surface hydrophobicity. Four GPs (SA-macroGP, macroGP, SA-mesoGP, and mesoGP) were incubated with whole cells and with CFPs to quantify GP adsorption capabilities. Following MRSA culture incubation with GPs, unbound MRSA cells were filtered and plated to determine cell counts. Following CFP incubation with GPs, unbound CFPs were separated via SDS-PAGE, stained with SYPRO Ruby, and analyzed using densitometry. Results indicate that macroGP was the most effective at adsorbing whole MRSA cells. Visual banding patterns and densitometry quantitation indicate that SA-mesoGP was the most effective at adsorbing CFP. Ultimately, GP-based products may be further developed as nonselective or selective adsorbents and integrated into fibrous materials for topical applications.
ContributorsGanser, Collin (Co-author, Co-author) / Haydel, Shelley E. (Thesis director) / Seo, Don (Committee member) / Borges, Chad (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132548-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a neurodegenerative disease resulting in loss of cognitive function and is not considered part of the typical aging process. Recently, research is being conducted to study environmental effects on AD because the exact molecular mechanisms behind AD are not known. The associations between various toxins and

Alzheimer’s disease (AD) is a neurodegenerative disease resulting in loss of cognitive function and is not considered part of the typical aging process. Recently, research is being conducted to study environmental effects on AD because the exact molecular mechanisms behind AD are not known. The associations between various toxins and AD have been mixed and unclear. In order to better understand the role of the environment and toxic substances on AD, we conducted a literature review and geospatial analysis of environmental, specifically wastewater, contaminants that have biological plausibility for increasing risk of development or exacerbation of AD. This literature review assisted us in selecting 10 wastewater toxic substances that displayed a mixed or one-sided relationship with the symptoms or prevalence of Alzheimer’s for our data analysis. We utilized data of toxic substances in wastewater treatment plants and compared them to the crude rate of AD in the different Census regions of the United States to test for possible linear relationships. Using data from the Targeted National Sewage Sludge Survey (TNSSS) and the Centers for Disease Control and Prevention (CDC), we developed an application using R Shiny to allow users to interactively visualize both datasets as choropleths of the United States and understand the importance of this area of research. Pearson’s correlation coefficient was calculated resulting in arsenic and cadmium displaying positive linear correlations with AD. Other analytes from this statistical analysis demonstrated mixed correlations with AD. This application and data analysis serve as a model in the methodology for further geospatial analysis on AD. Further data analysis and visualization at a lower level in terms of scope is necessary for more accurate and reliable evidence of a causal relationship between the wastewater substance analytes and AD.
GitHub Repository: https://github.com/komal-agrawal/AD_GIS.git
ContributorsAgrawal, Komal (Author) / Scotch, Matthew (Thesis director) / Halden, Rolf (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables

The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables that are not recorded or regulated in a vast majority of cases. Frequently, these samples arrive at the research or pathology lab with an unknown history, then undergo analysis for translational research purposes, or to guide clinical management decisions. Thus, compromised specimen quality caused by preanalytic variables has substantial, and potentially devastating, downstream effects. To identify the preanalytic variables with the greatest impact on blood and tissue specimen quality, 45 articles were gathered using PubMed and Google Scholar databases and cited. Based on the articles, the top five variables with the most detrimental effects were identified for both blood and tissue samples. Multiple sets of parameters ensuring specimen fitness were compared for each of the five variables for each specimen type. Then, specific parameters guaranteeing the fitness of the greatest number of analytes were verified. To present the research findings in greater detail, a paper was written that focused on identifying the top variables and key parameters to ensure analyte fitness. To present the overall issue in an easy-to-digest format, a storyboard and script were created as a guideline for a final video project. Ultimately, two alternate versions of the video were created to pertain to the audience of choice (one version for patients, one version for professionals). It is the hope that these videos will be used as educational tools to continue efforts to standardize and enforce human biospecimen preanalytic variable parameters. This is a necessary step to improve the accuracy of our biomedical research data and the healthcare of patients worldwide.
ContributorsAzcarate, Heather (Author) / Compton, Carolyn (Thesis director) / LaBaer, Joshua (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2018-12
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131979-Thumbnail Image.png
Description
With opioid use disorder (OUD) being an epidemic, it is important to investigate the mechanisms as to why this is so. This study established a self-administration paradigm to model and investigate the mechanisms of polysubstance, sequential use in conjunction with the analysis of withdrawal symptomatology driven by opioid withdrawal. The

With opioid use disorder (OUD) being an epidemic, it is important to investigate the mechanisms as to why this is so. This study established a self-administration paradigm to model and investigate the mechanisms of polysubstance, sequential use in conjunction with the analysis of withdrawal symptomatology driven by opioid withdrawal. The independent variables were dichotomized into the control group (food/cocaine) and the experimental group (oxycodone/cocaine). We hypothesized that more cocaine would be self-administered on the first day of oxycodone withdrawal. In addition, we hypothesized that somatic signs of withdrawal would increase at 16 hours post-oxycodone self-administration. Finally, we hypothesized that cocaine intake during oxycodone withdrawal would potentiate subsequent oxycodone self-administration. Our findings revealed that animals readily discriminated between the active (food or oxycodone) and inactive levers - but will however require more animals to achieve the appropriate power. Further, the average cocaine infusions across phases exhibited significance between the oxycodone/cocaine and food/cocaine group, with the average cocaine infusions being lower in food than in oxycodone-experienced animals. This implies that the exacerbation of the sequential co-use pattern in this case yields an increase in cocaine infusions that may be driven by oxycodone withdrawal. Further, to characterize withdrawal from oxycodone self-administration, somatic signs were examined at either 0 or 16 hrs following completion of oxycodone self-administration. The oxycodone/cocaine group exhibited significantly lower body temperature at 16 hrs of oxycodone withdrawal compared to 0 hrs. No differences in somatic signs of withdrawal in the food/cocaine group was found between the two timepoints. Oxycodone withdrawal was not found to potentiate any subsequent self-administration of oxycodone. Future research is needed to uncover neurobiological underpinnings of motivated polysubstance use in order to discover novel pharmacotherapeutic treatments to decrease co-use of drugs of abuse. Overall, this study is of importance as it is the first to establish a working preclinical model of a clinically-relevant pattern of polysubstance use. By doing so, it enables an exceptional opportunity to examine co-use in a highly-controlled setting.
ContributorsUlangkaya, Hanaa Corsino (Author) / Gipson-Reichardt, Cassandra (Thesis director) / Olive, M. Foster (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133164-Thumbnail Image.png
Description
In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality

In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality of biospecimens in an undesired way and ultimately render the samples unsuitable for molecular analysis. The limited ability to directly reduce discrepancies caused by preanalytical variables gives rise to the need for development and retrospective application of appropriate tests for assessment of biospecimen integrity. Nevertheless, the most standard approaches to assessing biospecimen integrity involve nontrivial procedures. Thus, the need for quality control tools or tests that are readily applicable and can produce results in a straightforward way becomes critical. As one of the major ex vivo biomolecular degradation mechanisms, oxidation that occurs when blood plasma and serum samples are exposed to thawed states during storage and processing is hard to forestall and detect. In an attempt to easily detect and monitor the degree of oxidation, the technique of Fluorescence Resonance Energy Transfer (FRET) was examined to determine whether this concept could be employed to monitor exposure of samples to thawed conditions when controlled by spontaneous oxidative disulfide bonding. The intended mode of usage was envisioned as a fluorescence liquid being stored in a separate compartment but within the same test tube as archived plasma and serum samples. This would allow the assessment of sample integrity by direct visualization of fluorescence under a hand-held black light. The fluorescent dynamic range as well as kinetic control of the reaction were studied. While the addition of Cu(II) proved to facilitate excellent dynamic range with regard to fluorescence quenching, the kinetics of the reaction were too rapid for practical use. Further investigation revealed that the fluorescence quenching mechanism might have actually occurred via Intramolecular Charge Transfer (ICT) rather than FRET mediated by oxidative disulfide bond formation. Introduction of Cu(II) via copper metal slowed fluorescence quenching to the point of practical utility; facilitating demonstration that storing at room temperature, refrigerating or freezing the samples delayed fluorescence quenching to different extents. To establish better kinetic control, future works will focus on establishing controlled, thoroughly understood kinetic release of Cu(II) from copper metal.
ContributorsZhang, Zihan (Author) / Borges, Chad (Thesis director) / Emady, Heather (Committee member) / Williams, Peter (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133679-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a progressive cognitive and behavior disorder that is characterized by the deposition of extracellular Aβ plaques, intracellular neurofibrillary tangles, and neuroinflammation. Aβ is generated by cleavage of the amyloid precursor protein (APP) by β-secretase (BACE1) and, subsequently, y- secretase. In recent years, there has been an

Alzheimer’s disease (AD) is a progressive cognitive and behavior disorder that is characterized by the deposition of extracellular Aβ plaques, intracellular neurofibrillary tangles, and neuroinflammation. Aβ is generated by cleavage of the amyloid precursor protein (APP) by β-secretase (BACE1) and, subsequently, y- secretase. In recent years, there has been an increasing interest in studying and understanding inflammation as a therapeutic target for AD. Inflammation manifests in the brain in the form of activated microglia and astrocytes. These cells are able to release high levels of inflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α). TNF-α is a major cytokine, which is involved in early inflammatory events and plays a role in the progression of AD pathology. There are currently no treatments that target chronic neuroinflammation. However, previous work in our laboratory with transgenic mice modeling AD suggested that the anti-cancer drug lenalidomide could lower neuroinflammation and slow AD progression, though the cellular and molecular mechanisms are yet to be elucidated. Here we hypothesized that lenalidomide can modulate TNF-α production in microglia and decrease amyloidogenesis. Using immortal cell lines mimicking several brain cell types, we discovered that lenalidomide is likely to decrease inflammation by modulating microglia cells rather than neurons or astrocytes. In addition, the drug may prevent the overexpression of BACE1 upon inflammation, thus blocking the overproduction of Aβ. If confirmed, these results could lead to a better understanding of how inflammation regulates Aβ synthesis and provide novel cellular and molecular therapeutic targets to control the progression AD.
ContributorsGujju, Manasa (Author) / DeCourt, Boris (Thesis director) / Olive, M. Foster (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05