Matching Items (100)
Filtering by

Clear all filters

157302-Thumbnail Image.png
Description
Dielectrophoresis (DEP) is a technique that influences the motion of polarizable particles in an electric field gradient. DEP can be combined with other effects that influence the motion of a particle in a microchannel, such as electrophoresis and electroosmosis. Together, these three can be used to probe properties

Dielectrophoresis (DEP) is a technique that influences the motion of polarizable particles in an electric field gradient. DEP can be combined with other effects that influence the motion of a particle in a microchannel, such as electrophoresis and electroosmosis. Together, these three can be used to probe properties of an analyte, including charge, conductivity, and zeta potential. DEP shows promise as a high-resolution differentiation and separation method, with the ability to distinguish between subtly-different populations. This, combined with the fast (on the order of minutes) analysis times offered by the technique, lend it many of the features necessary to be used in rapid diagnostics and point-of-care devices.

Here, a mathematical model of dielectrophoretic data is presented to connect analyte properties with data features, including the intercept and slope, enabling DEP to be used in applications which require this information. The promise of DEP to distinguish between analytes with small differences is illustrated with antibiotic resistant bacteria. The DEP system is shown to differentiate between methicillin-resistant and susceptible Staphylococcus aureus. This differentiation was achieved both label free and with bacteria that had been fluorescently-labeled. Klebsiella pneumoniae carbapenemase-positive and negative Klebsiella pneumoniae were also distinguished, demonstrating the differentiation for a different mechanism of antibiotic resistance. Differences in dielectrophoretic behavior as displayed by S. aureus and K. pneumoniae were also shown by Staphylococcus epidermidis. These differences were exploited for a separation in space of gentamicin-resistant and -susceptible S. epidermidis. Besides establishing the ability of DEP to distinguish between populations with small biophysical differences, these studies illustrate the possibility for the use of DEP in applications such as rapid diagnostics.
ContributorsHilton, Shannon (Author) / Hayes, Mark A. (Thesis advisor) / Borges, Chad (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2019
157161-Thumbnail Image.png
Description
Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology).

Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology). This dissertation describes the utilization of plant expression systems to produce N-glycan specific antibody-based therapeutics for Dengue Virus (DENV) and Chikungunya Virus (CHIKV). The Fc region of an antibody interacts with Fcγ Receptors (FcγRs) on immune cells and components of the innate immune system. Each class of immune cells has a distinct action of neutralization (e.g., antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP)). Therefore, structural alteration of the Fc region results in novel immune pathways of protection. One approach is to modulate the N-glycosylation in the Fc region of the antibody. Of scientific significance, is the plant’s capacity to express human antibodies with homogenous plant and humanized N-glycosylation (WT and GnGn, respectively). This allows to study how specific glycovariants interact with other components of the immune system to clear an infection, producing a tailor-made antibody for distinct diseases. In the first section, plant-produced glycovariants were explored for reduced interactions with specific FcγRs for the overall reduction in ADE for DENV infections. The results demonstrate a reduction in ADE of our plant-produced monoclonal antibodies in in vitro experiments, which led to a greater survival in vivo of immunodeficient mice challenged with lethal doses of DENV and a sub-lethal dose of DENV in ADE conditions. In the second section, plant-produced glycovariants were explored for increased interaction with specific FcγRs to improve ADCC in the treatment of the highly inflammatory CHIKV. The results demonstrate an increase ADCC activity in in vitro experiments and a reduction in CHIKV-associated inflammation in in vivo mouse models. Overall, the significance of this dissertation is that it can provide a treatment for DENV and CHIKV; but equally importantly, give insight to the role of N-glycosylation in antibody effector functions, which has a broader implication for therapeutic development for other viral infections.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Arntzen, Charles (Committee member) / Borges, Chad (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2019
154479-Thumbnail Image.png
Description
DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a

DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a technique called Recognition Tunneling (RT) based on Scanning Tunneling Microscope (STM). A single layer of specially designed recognition molecule is attached to the STM electrodes, which trap the targeted molecules (DNA nucleoside monophosphates, RNA nucleoside monophosphates or amino acids) inside the STM nanogap. Depending on their different binding interactions with the recognition molecules, the analyte molecules generate stochastic signal trains accommodating their “electronic fingerprints”. Signal features are used to detect the molecules using a machine learning algorithm and different molecules can be identified with significantly high accuracy. This, in turn, paves the way for rapid, economical nanopore sequencing platform, overcoming the drawbacks of Next Generation Sequencing (NGS) techniques.

To read DNA nucleotides with high accuracy in an STM tunnel junction a series of nitrogen-based heterocycles were designed and examined to check their capabilities to interact with naturally occurring DNA nucleotides by hydrogen bonding in the tunnel junction. These recognition molecules are Benzimidazole, Imidazole, Triazole and Pyrrole. Benzimidazole proved to be best among them showing DNA nucleotide classification accuracy close to 99%. Also, Imidazole reader can read an abasic monophosphate (AP), a product from depurination or depyrimidination that occurs 10,000 times per human cell per day.

In another study, I have investigated a new universal reader, 1-(2-mercaptoethyl)pyrene (Pyrene reader) based on stacking interactions, which should be more specific to the canonical DNA nucleosides. In addition, Pyrene reader showed higher DNA base-calling accuracy compare to Imidazole reader, the workhorse in our previous projects. In my other projects, various amino acids and RNA nucleoside monophosphates were also classified with significantly high accuracy using RT. Twenty naturally occurring amino acids and various RNA nucleosides (four canonical and two modified) were successfully identified. Thus, we envision nanopore sequencing biomolecules using Recognition Tunneling (RT) that should provide comprehensive betterment over current technologies in terms of time, chemical and instrumental cost and capability of de novo sequencing.
ContributorsSen, Suman (Author) / Lindsay, Stuart (Thesis advisor) / Zhang, Peiming (Thesis advisor) / Gould, Ian R. (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2016
154177-Thumbnail Image.png
Description
Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies

Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies to separate mitochondrial sub-populations by size are thus needed to study the importance of this organelle in cellular functions. Additionally, challenges also exist in distinguishing the sub-populations of bio-species which differ in the surface charge while possessing similar size, such as Salmonella typhimurium (Salmonella). The surface charge of Salmonella wild-type is altered upon environmental stimulations, influencing the bacterial survival and virulence within the host tissue. Therefore, it is important to explore methods to identify the sub-populations of Salmonella.

This work exploits insulator-based dielectrophoresis (iDEP) for the manipulation of mitochondria and Salmonella. The iDEP migration and trapping of mitochondria were investigated under both DC and low-frequency AC conditions, establishing that mitochondria exhibit negative DEP. Also, the first realization of size-based iDEP sorting experiments of mitochondria were demonstrated. As for Salmonella, the preliminary study revealed positive DEP behavior. Distinct trapping potential thresholds were found for the sub-populations with different surface charges.

Further, DEP was integrated with a non-intuitive migration mechanism termed absolute negative mobility (ANM), inducing a deterministic trapping component which allows the directed transport of µm- and sub-µm sized (bio)particles in microfluidic devices with a nonlinear post array under the periodic action of electrokinetic and dielectrophoretic forces. Regimes were revealed both numerically and experimentally in which larger particles migrate against the average applied force, whereas smaller particles show normal response. Moreover, this deterministic ANM (dANM) was characterized with polystyrene beads demonstrating improved migration speed at least two orders of magnitude higher compared to previous ANM systems with similar sized colloids. In addition, dANM was induced for mitochondria with an AC-overlaid waveform representing the first demonstration of ANM migration with biological species. Thus, it is envisioned that the efficient size selectivity of this novel migration mechanism can be employed in nanotechnology, organelle sub-population studies or fractionating protein nanocrystals.
ContributorsLuo, Jinghui (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2015
154259-Thumbnail Image.png
Description
Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that represents the ancient fusion of two major thiol-disulfide oxidoreductase gene families: thioredoxin and ERV. QSOX1 was first linked with cancer after being identified as overexpressed in pancreatic ductal adenocarcinoma (but not in adjacent normal ductal epithelia, infiltrating

Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that represents the ancient fusion of two major thiol-disulfide oxidoreductase gene families: thioredoxin and ERV. QSOX1 was first linked with cancer after being identified as overexpressed in pancreatic ductal adenocarcinoma (but not in adjacent normal ductal epithelia, infiltrating lymphocytes, or chronic pancreatitis). QSOX1 overexpression has been confirmed in a number of other histological tumor types, such as breast, lung, kidney, prostate, and others. Expression of QSOX1 supports a proliferative and invasive phenotype in tumor cells, and its enzymatic activity is critical for promoting an invasive phenotype. An in vivo tumor growth study utilizing the pancreatic tumor cell line MIAPaCa-2 containing a QSOX1-silencing shRNA construct revealed that QSOX1 expression supports a proliferative phenotype. These preliminary studies suggest that suppressing the enzymatic activity of QSOX1 could represent a novel therapeutic strategy to inhibit proliferation and invasion of malignant neoplasms.

The goal of this research was to identify and characterize biologically active small molecule inhibitors for QSOX1. Chemical inhibition of QSOX1 enzymatic activity was hypothesized to reduce growth and invasion of tumor cells. Recombinant QSOX1 was screened against libraries of small molecules using an enzymatic activity assay to identify potential QSOX1 inhibitors. Two lead QSOX1 inhibitors were confirmed, 2-phenyl-1, 2-benzisoselenazol-3-one (ebselen), and 3-methoxy-n-[4-(1 pyrrolidinyl)phenyl]benzamide. The biological activity of these compounds is consistent with QSOX1 knockdown in tumor cell lines, reducing growth and invasion in vitro. Treatment of tumor cells with these compounds also resulted in specific ECM defects, a phenotype associated with QSOX1 knockdown. Additionally, these compounds were shown to be active in pancreatic and renal cancer xenografts, reducing tumor growth with daily treatment. For ebselen, the molecular mechanism of inhibition was determined using a combination of biochemical and mass spectrometric techniques. The results obtained in these studies provide proof-of-principle that targeting QSOX1 enzymatic activity with chemical compounds represents a novel potential therapeutic avenue worthy of further investigation in cancer. Additionally, the utility of these small molecules as chemical probes will yield future insight into the general biology of QSOX1, including the identification of novel substrates of QSOX1.
ContributorsHanavan, Paul D (Author) / Lake, Douglas (Thesis advisor) / LaBaer, Joshua (Committee member) / Mangone, Marco (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2015
154458-Thumbnail Image.png
Description
For reading DNA bases more accurately, a series of nitrogen-containing aromatic heterocycles have been designed and synthesized as candidates of universal reader to interact with all naturally occurring DNA nucleobases by hydrogen bonding interaction and eventually is used to read DNA by recognition tunneling. These recognition molecules include 6-mercapto-1H-benzo[d]imidazole-2-carboxamide, 5-(2-mercaptoethyl)-1H-imidazole-2-carboxamide,

For reading DNA bases more accurately, a series of nitrogen-containing aromatic heterocycles have been designed and synthesized as candidates of universal reader to interact with all naturally occurring DNA nucleobases by hydrogen bonding interaction and eventually is used to read DNA by recognition tunneling. These recognition molecules include 6-mercapto-1H-benzo[d]imidazole-2-carboxamide, 5-(2-mercaptoethyl)-1H-imidazole-2-carboxamide, 5-(2-mercaptoethyl)-4H-1,2,4-traizole-3-carboxamide and 1-(2-mercaptoethyl)-1H-pyrrole-3-carboxamide. Their formation of hydrogen bonding complexes with nucleobases was studied and association constants were measured by proton NMR titration experiments in deuterated chloroform at room temperature. To do so, the mercaptoethyl chain or thiol group of these reading molecules was replaced or protected with the more lipophilic group to increase the solubility of these candidates in CDCl3. The 3' and 5' hydroxyl groups of deoxyadenosine (dA), deoxyguanosine (dG), deoxycytidine (dC) and thymidine (dT) were protected with tert-butyldimethylsilyl (TBDMS) to eliminate hydrogen bonding competition from the hydroxyl protons with these candidates as well as to increase the solubility of the nucleosides in CDCl3 for NMR titration experiment. Benzimidazole and imidazole containing readers exhibited the strongest H-bonding affinity towards DNA bases where pyrrole containing reader showed the weakest affinity. In all cases, dG revealed the strongest affinity towards the readers while dA showed the least.

The molecular complex formation in aqueous solution was studied by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry. The formation of both 1:1 and 2:1 complexes between one or two reading molecules and a DNA nucleotide were observed by ESI mass. A series of amino acids and carbohydrates were also examined by mass spectrometry to show the formation of non-covalent complexes with imidazole reader in aqueous solution. The experimental results were compared by calculating energies of ground state conformers of individual molecules and their complexes using computer modeling study by DFT calculations. These studies give insights into the molecular interactions that happen in a nanogap during recognition tunneling experiments.
ContributorsBiswas, Sovan (Author) / Lindsay, Stuart (Thesis advisor) / Zhang, Peiming (Thesis advisor) / Borges, Chad (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016
155112-Thumbnail Image.png
Description
A single cell is the very fundamental element in an organism; however, it contains the most complicated and stochastic information, such as DNA, RNA, and protein expression. Thus, it is a necessity to study stochastic gene expression in order to discover the biosignatures at the single-cell level. The heterogeneous gene

A single cell is the very fundamental element in an organism; however, it contains the most complicated and stochastic information, such as DNA, RNA, and protein expression. Thus, it is a necessity to study stochastic gene expression in order to discover the biosignatures at the single-cell level. The heterogeneous gene expression of single cells from an isogenic cell population has already been studied for years. Yet to date, single-cell studies have been confined in a fashion of analyzing isolated single cells or a dilution of cells from the bulk-cell populations. These techniques or devices are limited by either the mechanism of cell lysis or the difficulties to target specific cells without harming neighboring cells.

This dissertation presents the development of a laser lysis chip combined with a two-photon laser system to perform single-cell lysis of single cells in situ from three-dimensional (3D) cell spheroids followed by analysis of the cell lysate with two-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The 3D spheroids were trapped in a well in the custom-designed laser lysis chip. Next, each single cell of interest in the 3D spheroid was identified and lysed one at a time utilizing a two-photon excited laser. After each cell lysis, the contents inside the target cell were released to the surrounding media and carried out to the lysate collector. Finally, the gene expression of each individual cell was measured by two-step RT-qPCR then spatially mapped back to its original location in the spheroids to construct a 3D gene expression map.

This novel technology and approach enables multiple gene expression measurements in single cells of multicellular organisms as well as cell-to-cell heterogeneous responses to the environment with spatial recognition. Furthermore, this method can be applied to study precancerous tissues for a better understanding of cancer progression and for identifying early tumor development.
ContributorsWang, Guozhen (Author) / Meldrum, Deirdre R (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Hong (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016
152764-Thumbnail Image.png
Description
Within the last decade there has been remarkable interest in single-cell metabolic analysis as a key technology for understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Technologies have been developed for oxygen consumption rate (OCR) measurements using various configurations of microfluidic devices. The technical challenges of current approaches include:

Within the last decade there has been remarkable interest in single-cell metabolic analysis as a key technology for understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Technologies have been developed for oxygen consumption rate (OCR) measurements using various configurations of microfluidic devices. The technical challenges of current approaches include: (1) deposition of multiple sensors for multi-parameter metabolic measurements, e.g. oxygen, pH, etc.; (2) tedious and labor-intensive microwell array fabrication processes; (3) low yield of hermetic sealing between two rigid fused silica parts, even with a compliance layer of PDMS or Parylene-C. In this thesis, several improved microfabrication technologies are developed and demonstrated for analyzing multiple metabolic parameters from single cells, including (1) a modified "lid-on-top" configuration with a multiple sensor trapping (MST) lid which spatially confines multiple sensors to micro-pockets enclosed by lips for hermetic sealing of wells; (2) a multiple step photo-polymerization method for patterning three optical sensors (oxygen, pH and reference) on fused silica and on a polyethylene terephthalate (PET) surface; (3) a photo-polymerization method for patterning tri-color (oxygen, pH and reference) optical sensors on both fused silica and on the PET surface; (4) improved KMPR/SU-8 microfabrication protocols for fabricating microwell arrays that can withstand cell culture conditions. Implementation of these improved microfabrication methods should address the aforementioned challenges and provide a high throughput and multi-parameter single cell metabolic analysis platform.
ContributorsSong, Ganquan (Author) / Meldrum, Deirdre R (Thesis advisor) / Goryll, Michael (Committee member) / Wang, Hong (Committee member) / Tian, Yanqing (Committee member) / Arizona State University (Publisher)
Created2014
155489-Thumbnail Image.png
Description
In this thesis, a breadboard Integrated Microarray Printing and Detection System (IMPDS) was proposed to address key limitations of traditional microarrays. IMPDS integrated two core components of a high-resolution surface plasmon resonance imaging (SPRi) system and a piezoelectric dispensing system that can print ultra-low volume droplets. To avoid evaporation of

In this thesis, a breadboard Integrated Microarray Printing and Detection System (IMPDS) was proposed to address key limitations of traditional microarrays. IMPDS integrated two core components of a high-resolution surface plasmon resonance imaging (SPRi) system and a piezoelectric dispensing system that can print ultra-low volume droplets. To avoid evaporation of droplets in the microarray, a 100 μm thick oil layer (dodecane) was used to cover the chip surface. The interaction between BSA (Bovine serum albumin) and Anti-BSA was used to evaluate the capability of IMPDS. The alignment variability of printing, stability of droplets array and quantification of protein-protein interactions based on nanodroplet array were evaluated through a 10 x 10 microarray on SPR sensor chip. Binding kinetic constants obtained from IMPDS are close with results from commercial SPR setup (BI-3000), which indicates that IMPDS is capable to measure kinetic constants accurately. The IMPDS setup has following advantages: 1) nanoliter scale sample consumption, 2) high-throughput detection with real-time kinetic information for biomolecular interactions, 3) real-time information during printing and spot-on-spot detection of biomolecular interactions 4) flexible selection of probes and receptors (M x N interactions). Since IMPDS studies biomolecular interactions with low cost and high flexibility in real-time manner, it has great potential in applications such as drug discovery, food safety and disease diagnostics, etc.
ContributorsXiao, Feng (Author) / Tao, Nongjian (Thesis advisor) / Borges, Chad (Committee member) / Guo, Jia (Committee member) / Arizona State University (Publisher)
Created2017
155541-Thumbnail Image.png
Description
In the past decades, single-cell metabolic analysis has been playing a key role in understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Therefore, it is critical to develop technologies for individual cellular metabolic analysis using various configurations of microfluidic devices. Compared to bulk-cell analysis which is widely used by

In the past decades, single-cell metabolic analysis has been playing a key role in understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Therefore, it is critical to develop technologies for individual cellular metabolic analysis using various configurations of microfluidic devices. Compared to bulk-cell analysis which is widely used by reporting an averaged measurement, single-cell analysis is able to present the individual cellular responses to the external stimuli. Particularly, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) are two key parameters to monitor heterogeneous metabolic profiles of cancer cells. To achieve multi-parameter metabolic measurements on single cells, several technical challenges need to be overcome: (1) low adhesion of soft materials micro-fabricated on glass surface for multiple-sensor deposition and single-cell immobilization, e.g. SU-8, KMPR, etc.; (2) high risk of using external mechanical forces to create hermetic seals between two rigid fused silica parts, even with compliance layers; (3) how to accomplish high-throughput for single-cell trapping, metabolic profiling and drug screening; (4) high process cost of micromachining on glass substrate and incapability of mass production.

In this dissertation, the development of microfabrication technologies is demonstrated to design reliable configurations for analyzing multiple metabolic parameters from single cells, including (1) improved KMPR/SU-8 microfabrication protocols for fabricating microwell arrays that can be integrated and sealed to 3 × 3 tri-color sensor arrays for OCR and ECAR measurements; (2) design and characterization of a microfluidic device enabling rapid single-cell trapping and hermetic sealing single cells and tri-color sensors within 10 × 10 hermetically sealed microchamber arrays; (3) exhibition of a low-cost microfluidic device based on plastics for single-cell metabolic multi-parameter profiling. Implementation of these improved microfabrication methods should address the aforementioned challenges and provide a high throughput and multi-parameter single cell metabolic analysis platform.
ContributorsSong, Ganquan (Author) / Meldrum, Deirdre R. (Thesis advisor) / Goryll, Michael (Committee member) / Kelbauskas, Laimonas (Committee member) / Wang, Hong (Committee member) / Arizona State University (Publisher)
Created2017