Matching Items (14)
150322-Thumbnail Image.png
Description
Consumer goods supply chains have gradually incorporated lean manufacturing principles to identify and reduce non-value-added activities. Companies implementing lean practices have experienced improvements in cost, quality, and demand responsiveness. However certain elements of these practices, especially those related to transportation and distribution may have detrimental impact on the environment. This

Consumer goods supply chains have gradually incorporated lean manufacturing principles to identify and reduce non-value-added activities. Companies implementing lean practices have experienced improvements in cost, quality, and demand responsiveness. However certain elements of these practices, especially those related to transportation and distribution may have detrimental impact on the environment. This study asks: What impact do current best practices in lean logistics and retailing have on environmental performance? The research hypothesis of this dissertation establishes that lean distribution of durable and consumable goods can result in an increased amount of carbon dioxide emissions, leading to climate change and natural resource depletion impacts, while lean retailing operations can reduce carbon emissions. Distribution and retailing phases of the life cycle are characterized in a two-echelon supply chain discrete-event simulation modeled after current operations from leading organizations based in the U.S. Southwest. By conducting an overview of critical sustainability issues and their relationship with consumer products, it is possible to address the environmental implications of lean logistics and retailing operations. Provided the waste reduction nature from lean manufacturing, four lean best practices are examined in detail in order to formulate specific research propositions. These propositions are integrated into an experimental design linking annual carbon dioxide equivalent emissions to: (1) shipment frequency between supply chain partners, (2) proximity between decoupling point of products and final customers, (3) inventory turns at the warehousing level, and (4) degree of supplier integration. All propositions are tested through the use of the simulation model. Results confirmed the four research propositions. Furthermore, they suggest synergy between product shipment frequency among supply chain partners and product management due to lean retailing practices. In addition, the study confirms prior research speculations about the potential carbon intensity from transportation operations subject to lean principles.
ContributorsUgarte Irizarri, Gustavo Marco Antonio (Author) / Golden, Jay S. (Thesis advisor) / Dooley, Kevin J. (Thesis advisor) / Boone, Christopher G. (Committee member) / Basile, George M. (Committee member) / Arizona State University (Publisher)
Created2011
152187-Thumbnail Image.png
Description
Sustainable development in an American context implies an ongoing shift from quantitative growth in energy, resource, and land use to the qualitative development of social-ecological systems, human capital, and dense, vibrant built environments. Sustainable urban development theory emphasizes locally and bioregionally emplaced economic development where the relationships between people, localities,

Sustainable development in an American context implies an ongoing shift from quantitative growth in energy, resource, and land use to the qualitative development of social-ecological systems, human capital, and dense, vibrant built environments. Sustainable urban development theory emphasizes locally and bioregionally emplaced economic development where the relationships between people, localities, products, and capital are tangible to and controllable by local stakeholders. Critical theory provides a mature understanding of the political economy of land development in capitalist economies, representing a crucial bridge between urban sustainability's infill development goals and the contemporary realities of the development industry. Since its inception, Phoenix, Arizona has exemplified the quantitative growth paradigm, and recurring instances of land speculation, non-local capital investment, and growth-based public policy have stymied local, tangible control over development from Phoenix's territorial history to modern attempts at downtown revitalization. Utilizing property ownership and sales data as well as interviews with development industry stakeholders, the political economy of infill land development in downtown Phoenix during the mid-2000s boom-and-bust cycle is analyzed. Data indicate that non-local property ownership has risen significantly over the past 20 years and rent-seeking land speculation has been a significant barrier to infill development. Many speculative strategies monopolize the publicly created value inherent in zoning entitlements, tax incentives and property assessment, indicating that political and policy reforms targeted at a variety of governance levels are crucial for achieving the sustainable development of urban land. Policy solutions include reforming the interconnected system of property sales, value assessment, and taxation to emphasize property use values; replacing existing tax incentives with tax increment financing and community development benefit agreements; regulating vacant land ownership and deed transfers; and encouraging innovative private development and tenure models like generative construction and community land trusts.
ContributorsStanley, Benjamin W (Author) / Boone, Christopher G. (Thesis advisor) / Redman, Charles (Committee member) / Bolin, Robert (Committee member) / Arizona State University (Publisher)
Created2013
151928-Thumbnail Image.png
Description
Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where

Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where interaction with social dynamics is intense. This research asks: How do patterns of land cover and land fragmentation vary over time and space, and what are the socio-ecological drivers and consequences of land transformation in a rapidly growing city? Using Metropolitan Phoenix as a case study, the research links pattern and process relationships between land cover, land fragmentation, and socio-ecological systems in the region. It examines population growth, water provision and institutions as major drivers of land transformation, and the changes in bird biodiversity that result from land transformation. How to manage socio-ecological systems is one of the biggest challenges of moving towards sustainability. This research project provides a deeper understanding of how land transformation affects socio-ecological dynamics in an urban setting. It uses a series of indices to evaluate land cover and fragmentation patterns over the past twenty years, including land patch numbers, contagion, shapes, and diversities. It then generates empirical evidence on the linkages between land cover patterns and ecosystem properties by exploring the drivers and impacts of land cover change. An interdisciplinary approach that integrates social, ecological, and spatial analysis is applied in this research. Findings of the research provide a documented dataset that can help researchers study the relationship between human activities and biotic processes in an urban setting, and contribute to sustainable urban development.
ContributorsZhang, Sainan (Author) / Boone, Christopher G. (Thesis advisor) / York, Abigail M. (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
151020-Thumbnail Image.png
Description
Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order to cope with this complexity, clinicians tend to develop ad-hoc

Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order to cope with this complexity, clinicians tend to develop ad-hoc adaptations to function in an effective manner. It is these adaptations or "deviations" from expected behaviors that provide insight into the processes that shape the overall behavior of the complex system. The research described in this manuscript examines the cognitive basis of clinicians' adaptive mechanisms and presents a methodology for studying the same. Examining interactions in complex systems is difficult due to the disassociation between the nature of the environment and the tools available to analyze underlying processes. In this work, the use of a mixed methodology framework to study trauma critical care, a complex environment, is presented. The hybrid framework supplements existing methods of data collection (qualitative observations) with quantitative methods (use of electronic tags) to capture activities in the complex system. Quantitative models of activities (using Hidden Markov Modeling) and theoretical models of deviations were developed to support this mixed methodology framework. The quantitative activity models developed were tested with a set of fifteen simulated activities that represent workflow in trauma care. A mean recognition rate of 87.5% was obtained in automatically recognizing activities. Theoretical models, on the other hand, were developed using field observations of 30 trauma cases. The analysis of the classification schema (with substantial inter-rater reliability) and 161 deviations identified shows that expertise and role played by the clinician in the trauma team influences the nature of deviations made (p<0.01). The results shows that while expert clinicians deviate to innovate, deviations of novices often result in errors. Experts' flexibility and adaptiveness allow their deviations to generate innovative ideas, in particular when dynamic adjustments are required in complex situations. The findings suggest that while adherence to protocols and standards is important for novice practitioners to reduce medical errors and ensure patient safety, there is strong need for training novices in coping with complex situations as well.
ContributorsVankipuram, Mithra (Author) / Greenes, Robert A (Thesis advisor) / Patel, Vimla L. (Thesis advisor) / Petitti, Diana B. (Committee member) / Dinu, Valentin (Committee member) / Smith, Marshall L. (Committee member) / Arizona State University (Publisher)
Created2012
141387-Thumbnail Image.png
Description

Objectives: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000–2008).

Methods: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to

Objectives: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000–2008).

Methods: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to map vulnerability and residential addresses of persons who died from heat exposure in 2,081 census block groups. Binary logistic regression and spatial analysis were used to associate deaths with neighborhoods.

Results: Neighborhood scores on three factors—socioeconomic vulnerability, elderly/isolation, and unvegetated area—varied widely throughout the study area. The preferred model (based on fit and parsimony) for predicting the odds of one or more deaths from heat exposure within a census block group included the first two factors and surface temperature in residential neighborhoods, holding population size constant. Spatial analysis identified clusters of neighborhoods with the highest heat vulnerability scores. A large proportion of deaths occurred among people, including homeless persons, who lived in the inner cores of the largest cities and along an industrial corridor.

Conclusions: Place-based indicators of vulnerability complement analyses of person-level heat risk factors. Surface temperature might be used in Maricopa County to identify the most heat-vulnerable neighborhoods, but more attention to the socioecological complexities of climate adaptation is needed.

ContributorsHarlan, Sharon L. (Author) / Declet-Barreto, Juan H. (Author) / Stefanov, William L. (Author) / Petitti, Diana B. (Author)
Created2013-02-01
141388-Thumbnail Image.png
Description

In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages

In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages <65 and ≥65 during the months May–October for years 2000–2008. The most robust relationship was between ATmax on day of death and mortality from direct exposure to high environmental heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90–97 °F; 32.2‒36.1 °C) were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C). Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C) with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C) and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C) and males <65 years (ATmax = 102 °F; 38.9 °C). Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.

ContributorsHarlan, Sharon L. (Author) / Chowell, Gerardo (Author) / Yang, Shuo (Author) / Petitti, Diana B. (Author) / Morales Butler, Emmanuel J. (Author) / Ruddell, Benjamin L. (Author) / Ruddell, Darren M. (Author)
Created2014-05-20
141389-Thumbnail Image.png
Description

Human exposure to excessively warm weather, especially in cities, is an increasingly important public health problem. This study examined heat-related health inequalities within one city in order to understand the relationships between the microclimates of urban neighborhoods, population characteristics, thermal environments that regulate microclimates, and the resources people possess to

Human exposure to excessively warm weather, especially in cities, is an increasingly important public health problem. This study examined heat-related health inequalities within one city in order to understand the relationships between the microclimates of urban neighborhoods, population characteristics, thermal environments that regulate microclimates, and the resources people possess to cope with climatic conditions. A simulation model was used to estimate an outdoor human thermal comfort index (HTCI) as a function of local climate variables collected in 8 diverse city neighborhoods during the summer of 2003 in Phoenix, USA. HTCI is an indicator of heat stress, a condition that can cause illness and death. There were statistically significant differences in temperatures and HTCI between the neighborhoods during the entire summer, which increased during a heat wave period. Lower socioeconomic and ethnic minority groups were more likely to live in warmer neighborhoods with greater exposure to heat stress. High settlement density, sparse vegetation, and having no open space in the neighborhood were significantly correlated with higher temperatures and HTCI. People in warmer neighborhoods were more vulnerable to heat exposure because they had fewer social and material resources to cope with extreme heat. Urban heat island reduction policies should specifically target vulnerable residential areas and take into account equitable distribution and preservation of environmental resources.

ContributorsHarlan, Sharon L. (Author) / Brazel, Anthony J. (Author) / Prashad, Lela (Author) / Stefanov, William L. (Author) / Larsen, Larissa (Author)
Created2006-09-25
141399-Thumbnail Image.png
Description

Urban ecosystems are subjected to high temperatures—extreme heat events, chronically hot weather, or both—through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better

Urban ecosystems are subjected to high temperatures—extreme heat events, chronically hot weather, or both—through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970–2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade‐offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25°C surface cooling compared to bare soil on low‐humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits.

To estimate the water loss associated with land‐surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation–income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the benefits, costs, spatial structure, and temporal trajectory for the use of ecosystem services to moderate climate extremes. Increasing vegetation is one strategy for moderating regional climate changes in urban areas and simultaneously providing multiple ecosystem services. However, vegetation has economic, water, and social equity implications that vary dramatically across neighborhoods and need to be managed through informed environmental policies.

ContributorsJenerette, G. Darrel (Author) / Harlan, Sharon L. (Author) / Stefanov, William L. (Author) / Martin, Chris A. (Author)
Created2011-10-01
141430-Thumbnail Image.png
Description

Context:
With rapidly expanding urban regions, the effects of land cover changes on urban surface temperatures and the consequences of these changes for human health are becoming progressively larger problems.

Objectives:
We investigated residential parcel and neighborhood scale variations in urban land surface temperature, land cover, and residents’ perceptions of landscapes and heat

Context:
With rapidly expanding urban regions, the effects of land cover changes on urban surface temperatures and the consequences of these changes for human health are becoming progressively larger problems.

Objectives:
We investigated residential parcel and neighborhood scale variations in urban land surface temperature, land cover, and residents’ perceptions of landscapes and heat illnesses in the subtropical desert city of Phoenix, AZ USA.

Methods:
We conducted an airborne imaging campaign that acquired high resolution urban land surface temperature data (7 m/pixel) during the day and night. We performed a geographic overlay of these data with high resolution land cover maps, parcel boundaries, neighborhood boundaries, and a household survey.

Results:
Land cover composition, including percentages of vegetated, building, and road areas, and values for NDVI, and albedo, was correlated with residential parcel surface temperatures and the effects differed between day and night. Vegetation was more effective at cooling hotter neighborhoods. We found consistencies between heat risk factors in neighborhood environments and residents’ perceptions of these factors. Symptoms of heat-related illness were correlated with parcel scale surface temperature patterns during the daytime but no corresponding relationship was observed with nighttime surface temperatures.

Conclusions:
Residents’ experiences of heat vulnerability were related to the daytime land surface thermal environment, which is influenced by micro-scale variation in land cover composition. These results provide a first look at parcel-scale causes and consequences of urban surface temperature variation and provide a critically needed perspective on heat vulnerability assessment studies conducted at much coarser scales.

ContributorsJenerette, Darrel G. (Author) / Harlan, Sharon L. (Author) / Buyantuev, Alexander (Author) / Stefanov, William L. (Author) / Declet-Barreto, Juan (Author) / Ruddel, Benjamin L. (Author) / Myint, Soe Win (Author) / Kaplan, Shari (Author) / Li, XiaiXiao (Author)
Created2015-10-19
152753-Thumbnail Image.png
Description
Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early

Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity, age, and socioeconomic classes. The results indicate that changing the scale of the analysis can change the equitable relationship between pollution and demographics. The scientific findings of the scale-dependent relationships among air pollution patterns, network design, and population demographics, brought to light through this study, can help policymakers make informed decisions for protecting the human health and the urban environment in the Phoenix metropolitan region and beyond.
ContributorsPope, Ronald L (Author) / Wu, Jianguo (Thesis advisor) / Boone, Christopher G. (Committee member) / Brazel, Anthony J. (Committee member) / Forzani, Erica S. (Committee member) / Fraser, Matthew P. (Committee member) / Arizona State University (Publisher)
Created2014