Matching Items (37)
Filtering by

Clear all filters

157106-Thumbnail Image.png
Description
In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting

In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting and is an evolutionary paradox. The best explanation for imprinting is David Haig's kinship theory, which hypothesizes that monoallelic gene expression is largely the result of evolutionary conflict between males and females over maternal involvement in their offspring. One previous RNAseq study has investigated the presence of parent-of-origin effects, or imprinting, in the parasitic jewel wasp Nasonia vitripennis (N. vitripennis) and its sister species Nasonia giraulti (N. giraulti) to test the predictions of kinship theory in a non-eusocial species for comparison to a eusocial one. In order to continue to tease apart the connection between social and eusocial Hymenoptera, this study proposed a similar RNAseq study that attempted to reproduce these results in unique samples of reciprocal F1 Nasonia hybrids. Building a pseudo N. giraulti reference genome, differences were observed when aligning RNAseq reads to a N. vitripennis reference genome compared to aligning reads to a pseudo N. giraulti reference. As well, no evidence for parent-of-origin or imprinting patterns in adult Nasonia were found. These results demonstrated a species-of-origin effect. Importantly, the study continued to build a repository of support with the aim to elucidate the mechanisms behind imprinting in an excellent epigenetic model species, as it can also help with understanding the phenomenon of imprinting in complex human diseases.
ContributorsUnderwood, Avery Elizabeth (Author) / Wilson, Melissa (Thesis advisor) / Buetow, Kenneth (Committee member) / Gile, Gillian (Committee member) / Arizona State University (Publisher)
Created2019
133640-Thumbnail Image.png
Description
Bdellovibrio bacteriovorus is a predatory bacterium that may serve as a living antibiotic by destroying biofilms and invading gram-negative bacteria. Swimming at over 100μm s-1, these predators collide into their prey and invade them to complete their life cycle. While previous experiments have investigated B. bacteriovorus’ motility, no study has

Bdellovibrio bacteriovorus is a predatory bacterium that may serve as a living antibiotic by destroying biofilms and invading gram-negative bacteria. Swimming at over 100μm s-1, these predators collide into their prey and invade them to complete their life cycle. While previous experiments have investigated B. bacteriovorus’ motility, no study has yet collected swim speed variations over the lifespan of B. bacteriovorus. In this study, we used state-of-the-art bacterial tracking methods to record the speed of tens of thousands of bacteria. These results were used to describe their metabolic state under starvation conditions in which they lose energy in a dissipative manner by propelling themselves at high speeds through solution. In particular, we investigated the metabolic response of starved predators to the addition of prey-lysate.
ContributorsCarlson, Mikayla Lynn (Co-author) / David, Rowland (Co-author) / Presse, Steve (Thesis director) / Gile, Gillian (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133648-Thumbnail Image.png
Description
The termite Coptotermes gestroi is a small subterranean termite originating from Southeast Asia. The hindgut of C. gestroi contains five distinct species of parabasalid: Pseudotrichonympha leei, two undescribed species from the genus Holomastigotoides, and two undescribed species from the genus Cononympha. This study investigates the protist symbionts in C. gestroi

The termite Coptotermes gestroi is a small subterranean termite originating from Southeast Asia. The hindgut of C. gestroi contains five distinct species of parabasalid: Pseudotrichonympha leei, two undescribed species from the genus Holomastigotoides, and two undescribed species from the genus Cononympha. This study investigates the protist symbionts in C. gestroi and the relationship between their relative abundance as inferred by Illumina sequence reads and the directly observed abundances for each protist genus. Illumina amplicon sequencing as a means of DNA analysis is a proven method for identification and diversity analysis, although the specific ratios of sequence reads to cell abundance in protists is not well known. In this study, protist communities were observed under light microscopy; cells were counted under hemocytometer and characterized at the molecular level using Illumina amplicon sequencing. When comparing sequence read abundances to cell abundances, some general trends were found in both analysis methods. Cononmypha repeatedly formed the majority of the community, while Holomastigotoides and Pseudotrichonympha were responsible for a smaller yet similar portion of the population. Cell counts and sequence reads were also compared using an assumed linear model, with R2 values generated to quantify the relationship between both. The results suggest that Illumina sequencing can be used to obtain rough estimates of community diversity, but the high variability within the data suggest that the read abundances should be treated with caution.
ContributorsAvilucea, Erin L. (Author) / Gile, Gillian (Thesis director) / DeMartini, Francesca (Committee member) / Taerum, Stephen Joshua (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134021-Thumbnail Image.png
Description
The termite Zootermopsis nevadensis nuttingi, which is located in coastal forests of the western United States, plays an important ecological role in the breakdown and digestion of wood. Vital to this role are symbiotic protists residing in the termite's hindgut. Five protist genera of varying size and morphology make u

The termite Zootermopsis nevadensis nuttingi, which is located in coastal forests of the western United States, plays an important ecological role in the breakdown and digestion of wood. Vital to this role are symbiotic protists residing in the termite's hindgut. Five protist genera of varying size and morphology make up this gut community. Despite years of study on this termite species, little was known about the spatial organization of the protist community within Zootermopsis nevadensis nuttingi. To resolve this issue, a study was conducted in which the distribution of protist genera among gut segments was observed and elucidated. This was done by separating hindgut segments, then counting the protists using a hemocytometer at a magnification of 200x. 60 segments from 20 termites were examined, and the total number of protists counted was 69,560. Images were also taken using a scanning electron microscope. Statistically significant, distinct distribution patterns were found for Trichonympha, Trichomitopsis and Streblomastix, while the small genera of Hexamastix and Tricercomitus appeared to have no special distribution. Trichomitopsis was more abundant in the posterior hindgut, Streblomastix was more abundant anteriorly, while the distribution of Trichonympha varied by colony. Hexamastix and Tricercomitus make up a large majority of the protists observed in any segment, followed by Streblomastix, Trichomitopsis and Trichonympha. Understanding the distribution of different protists within the hindgut may improve our understanding of the ecological relationships among protists as well as their individual roles in lignocellulose digestion, contributing to a better understanding of the hindgut system as a whole.
ContributorsPiarowski, Christina Marie (Author) / Gile, Gillian (Thesis director) / DeMartini, Francesca (Committee member) / Taerum, Stephen (Committee member) / School of International Letters and Cultures (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135295-Thumbnail Image.png
Description
Antibiotic resistance in the modern era has reached near-epidemic levels, resulting in much more difficult treatment of previously well-managed pathogens. Previous understandings of how antibiotic resistance emerges failed to account for the function of the environment. Over the past 15 years, new research has provided a link between the environmental

Antibiotic resistance in the modern era has reached near-epidemic levels, resulting in much more difficult treatment of previously well-managed pathogens. Previous understandings of how antibiotic resistance emerges failed to account for the function of the environment. Over the past 15 years, new research has provided a link between the environmental and clinical spheres of antibiotic use. This data suggests that environmental bacteria, particularly those found in livestock farming ecosystems, may significantly contribute to the overall flow of antibiotic resistance genes into human populations. The main force behind this is the utilization of antibiotics as growth promoters in animal feed supplements, seeding individual animals and their surroundings with low doses of antibiotics. Notable increases in resistance have been observed within areas that utilize these supplements, as well as in connected but unrelated systems. Waste management strategies are poorly implemented, leading to the dispersal of contaminated runoff into groundwater and riverine environments. Furthermore, existing waste processing is limited in efficacy, often releasing large amounts of unprocessed antibiotics as well as a concentrated population of resistant bacteria. Within these resistant populations, horizontal gene transfer has emerged as a vehicle for the distribution of resistance genes into other populations of bacteria. Due to the prevalence of these transfer events, a new role for the environment as a reservoir and incubator of resistance genes is proposed. Current strategies for managing the spread of antibiotic resistance are woefully inadequate, and the continued emergence of new resistance mechanisms due to negligence highlights the need for global, multidisciplinary solutions. To corral the spread of antibiotic resistance, a system is proposed that utilizes metagenomic monitoring and the enforcement of core global policies to slow the advance of resistance while waiting for novel treatment strategies to bear fruit.
ContributorsHrkal, Jacob (Author) / Gile, Gillian (Thesis director) / Shi, Yixin (Committee member) / Sarno, Analissa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148139-Thumbnail Image.png
Description

One of the largest problems facing modern medicine is drug resistance. Many classes of drugs can be rendered ineffective if their target is able to acquire beneficial mutations. While this is an excellent showcase of the power of evolution, it necessitates the development of increasingly stronger drugs to combat resistant

One of the largest problems facing modern medicine is drug resistance. Many classes of drugs can be rendered ineffective if their target is able to acquire beneficial mutations. While this is an excellent showcase of the power of evolution, it necessitates the development of increasingly stronger drugs to combat resistant pathogens. Not only is this strategy costly and time consuming, it is also unsustainable. To contend with this problem, many multi-drug treatment strategies are being explored. Previous studies have shown that resistance to some drug combinations is not possible, for example, resistance to a common antifungal drug, fluconazole, seems impossible in the presence of radicicol. We believe that in order to understand the viability of multi-drug strategies in combating drug resistance, we must understand the full spectrum of resistance mutations that an organism can develop, not just the most common ones. It is possible that rare mutations exist that are resistant to both drugs. Knowing the frequency of such mutations is important for making predictions about how problematic they will be when multi-drug strategies are used to treat human disease. This experiment aims to expand on previous research on the evolution of drug resistance in S. cerevisiae by using molecular barcodes to track ~100,000 evolving lineages simultaneously. The barcoded cells were evolved with serial transfers for seven weeks (200 generations) in three concentrations of the antifungal Fluconazole, three concentrations of the Hsp90 inhibitor Radicicol, and in four combinations of Fluconazole and Radicicol. Sequencing data was used to track barcode frequencies over the course of the evolution, allowing us to observe resistant lineages as they rise and quantify differences in resistance evolution across the different conditions. We were able to successfully observe over 100,000 replicates simultaneously, revealing many adaptive lineages in all conditions. Our results also show clear differences across drug concentrations and combinations, with the highest drug concentrations exhibiting distinct behaviors.

ContributorsApodaca, Samuel (Author) / Geiler-Samerotte, Kerry (Thesis director) / Schmidlin, Kara (Committee member) / Huijben, Silvie (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148071-Thumbnail Image.png
Description

Hundreds of thousands of people die annually from malaria; a protozoan of the genus Plasmodium is responsible for this mortality. The Plasmodium parasite undergoes several life stages within the mosquito vector, the transition between which require passage across the lumen of the mosquito midgut. It has been observed that in

Hundreds of thousands of people die annually from malaria; a protozoan of the genus Plasmodium is responsible for this mortality. The Plasmodium parasite undergoes several life stages within the mosquito vector, the transition between which require passage across the lumen of the mosquito midgut. It has been observed that in about 15% of parasites that develop ookinetes in the mosquito abdomen, sporozoites never develop in the salivary glands, indicating that passage across the midgut lumen is a significant barrier in parasite development (Gamage-Mendis et al., 1993). We aim to investigate a possible correlation between passage through the midgut lumen and drug-resistance trends in Plasmodium falciparum parasites. This study contains a total of 1024 Anopheles mosquitoes: 187 Anopheles gambiae and 837 Anopheles funestus samples collected in high malaria transmission areas of Mozambique between March and June of 2016. Sanger sequencing will be used to determine the prevalence of known resistance alleles for anti-malarial drugs: chloroquine resistance transporter (pfcrt), multidrug resistance (pfmdr1) gene, dihydropteroate synthase (pfdhps) and dihydrofolate reductase (pfdhfr). We compare prevalence of resistance between abdomen and head/thorax in order to determine whether drug resistant parasites are disproportionately hindered during their passage through the midgut lumen. A statistically significant difference between resistance alleles in the two studied body sections supports the efficacy of new anti-malarial gene surveillance strategies in areas of high malaria transmission.

ContributorsPhillips, Keeley Isabella (Author) / Huijben, Silvie (Thesis director) / Gile, Gillian (Committee member) / Young, Steven (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147925-Thumbnail Image.png
Description

Mosquitoes are estimated to kill roughly 700,000 people each year through the transmission of vector-borne diseases. Vector control via insecticides is a widely used method in order to combat the spread of mosquito populations; however, this comes at a cost. Resistance to insecticides has the potential to increase vector-borne disease

Mosquitoes are estimated to kill roughly 700,000 people each year through the transmission of vector-borne diseases. Vector control via insecticides is a widely used method in order to combat the spread of mosquito populations; however, this comes at a cost. Resistance to insecticides has the potential to increase vector-borne disease rates. Aedes aegypti is an invasive mosquito species in Arizona and is a known potential vector for a variety of infectious diseases including dengue, chikungunya, Zika, and yellow fever. In contrast to many other mosquito species Ae. aegypti mosquito eggs can undergo quiescence, an active state of dormancy, over long periods of time. Variation in quiescent periods correlates to climatic rainfall alterations and can ultimately influence hatching and mating between multiple generations. I have studied the effect of quiescence on larvicide (i.e., temephos) susceptibility using mosquito eggs collected from a susceptible lab strain and stored under optimal temperature and humidity conditions. After undergoing various quiescent periods (3, 7, 14, 28, 84, and 182 days), the experimental eggs as well as 7-day quiescent control eggs were hatched and reared to 3rd instar larvae. Temephos susceptibility was tested using the WHO bioassay procedure at lethal concentration (LC) 20, LC50, LC80, diagnostic dose (twice LC99), plus an untreated control. Each concentration dose was replicated four times with 20 larvae each. The 3-day experimental group was excluded from analysis because the mortality was significantly lower than the 7-day for both the experimental and control groups. The 3 day experimental eggs displayed decreased mortality which did not align with the hypothesis, as the quiescence period elongates under optimal conditions, susceptibility to insecticides decreases, and this could have likely resulted from unintentional selection for increased fitness and faster developing eggs because the larvae that developed to 3rd instar first were those used for larvicide testing. ANOVA testing demonstrates variability in the LC80 experimental group which suggests the need for further investigation into high dose temephos concentrations. For the experimental LC20 linear regression, there were significant differences in mortality. The results indicate mortality gradually decreases when the quiescence period elongates, therefore there are significant differences in insecticide susceptibility when quiescence is 182 days (or longer), compared to when quiescence is 7 days. Further investigation into field mosquito’s genetic diversity, insecticide resistance profile, and environmental conditions should be considered.

ContributorsKayce, Brenna Jean (Author) / Huijben, Silvie (Thesis director) / Paaijmans, Krijn (Committee member) / Jensen, Brook (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
ContributorsPerkins, Caitlin (Author) / Jacobs, Bertram (Thesis director) / Gile, Gillian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
ContributorsPerkins, Caitlin (Author) / Jacobs, Bertram (Thesis director) / Gile, Gillian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05