Matching Items (464)
Filtering by

Clear all filters

150111-Thumbnail Image.png
Description
Finding the optimal solution to a problem with an enormous search space can be challenging. Unless a combinatorial construction technique is found that also guarantees the optimality of the resulting solution, this could be an infeasible task. If such a technique is unavailable, different heuristic methods are generally used to

Finding the optimal solution to a problem with an enormous search space can be challenging. Unless a combinatorial construction technique is found that also guarantees the optimality of the resulting solution, this could be an infeasible task. If such a technique is unavailable, different heuristic methods are generally used to improve the upper bound on the size of the optimal solution. This dissertation presents an alternative method which can be used to improve a solution to a problem rather than construct a solution from scratch. Necessity analysis, which is the key to this approach, is the process of analyzing the necessity of each element in a solution. The post-optimization algorithm presented here utilizes the result of the necessity analysis to improve the quality of the solution by eliminating unnecessary objects from the solution. While this technique could potentially be applied to different domains, this dissertation focuses on k-restriction problems, where a solution to the problem can be presented as an array. A scalable post-optimization algorithm for covering arrays is described, which starts from a valid solution and performs necessity analysis to iteratively improve the quality of the solution. It is shown that not only can this technique improve upon the previously best known results, it can also be added as a refinement step to any construction technique and in most cases further improvements are expected. The post-optimization algorithm is then modified to accommodate every k-restriction problem; and this generic algorithm can be used as a starting point to create a reasonable sized solution for any such problem. This generic algorithm is then further refined for hash family problems, by adding a conflict graph analysis to the necessity analysis phase. By recoloring the conflict graphs a new degree of flexibility is explored, which can further improve the quality of the solution.
ContributorsNayeri, Peyman (Author) / Colbourn, Charles (Thesis advisor) / Konjevod, Goran (Thesis advisor) / Sen, Arunabha (Committee member) / Stanzione Jr, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
150114-Thumbnail Image.png
Description
Reverse engineering gene regulatory networks (GRNs) is an important problem in the domain of Systems Biology. Learning GRNs is challenging due to the inherent complexity of the real regulatory networks and the heterogeneity of samples in available biomedical data. Real world biological data are commonly collected from broad surveys (profiling

Reverse engineering gene regulatory networks (GRNs) is an important problem in the domain of Systems Biology. Learning GRNs is challenging due to the inherent complexity of the real regulatory networks and the heterogeneity of samples in available biomedical data. Real world biological data are commonly collected from broad surveys (profiling studies) and aggregate highly heterogeneous biological samples. Popular methods to learn GRNs simplistically assume a single universal regulatory network corresponding to available data. They neglect regulatory network adaptation due to change in underlying conditions and cellular phenotype or both. This dissertation presents a novel computational framework to learn common regulatory interactions and networks underlying the different sets of relatively homogeneous samples from real world biological data. The characteristic set of samples/conditions and corresponding regulatory interactions defines the cellular context (context). Context, in this dissertation, represents the deterministic transcriptional activity within the specific cellular regulatory mechanism. The major contributions of this framework include - modeling and learning context specific GRNs; associating enriched samples with contexts to interpret contextual interactions using biological knowledge; pruning extraneous edges from the context-specific GRN to improve the precision of the final GRNs; integrating multisource data to learn inter and intra domain interactions and increase confidence in obtained GRNs; and finally, learning combinatorial conditioning factors from the data to identify regulatory cofactors. The framework, Expattern, was applied to both real world and synthetic data. Interesting insights were obtained into mechanism of action of drugs on analysis of NCI60 drug activity and gene expression data. Application to refractory cancer data and Glioblastoma multiforme yield GRNs that were readily annotated with context-specific phenotypic information. Refractory cancer GRNs also displayed associations between distinct cancers, not observed through only clustering. Performance comparisons on multi-context synthetic data show the framework Expattern performs better than other comparable methods.
ContributorsSen, Ina (Author) / Kim, Seungchan (Thesis advisor) / Baral, Chitta (Committee member) / Bittner, Michael (Committee member) / Konjevod, Goran (Committee member) / Arizona State University (Publisher)
Created2011
149703-Thumbnail Image.png
Description
This dissertation studies routing in small-world networks such as grids plus long-range edges and real networks. Kleinberg showed that geography-based greedy routing in a grid-based network takes an expected number of steps polylogarithmic in the network size, thus justifying empirical efficiency observed beginning with Milgram. A counterpart for the grid-based

This dissertation studies routing in small-world networks such as grids plus long-range edges and real networks. Kleinberg showed that geography-based greedy routing in a grid-based network takes an expected number of steps polylogarithmic in the network size, thus justifying empirical efficiency observed beginning with Milgram. A counterpart for the grid-based model is provided; it creates all edges deterministically and shows an asymptotically matching upper bound on the route length. The main goal is to improve greedy routing through a decentralized machine learning process. Two considered methods are based on weighted majority and an algorithm of de Farias and Megiddo, both learning from feedback using ensembles of experts. Tests are run on both artificial and real networks, with decentralized spectral graph embedding supplying geometric information for real networks where it is not intrinsically available. An important measure analyzed in this work is overpayment, the difference between the cost of the method and that of the shortest path. Adaptive routing overtakes greedy after about a hundred or fewer searches per node, consistently across different network sizes and types. Learning stabilizes, typically at overpayment of a third to a half of that by greedy. The problem is made more difficult by eliminating the knowledge of neighbors' locations or by introducing uncooperative nodes. Even under these conditions, the learned routes are usually better than the greedy routes. The second part of the dissertation is related to the community structure of unannotated networks. A modularity-based algorithm of Newman is extended to work with overlapping communities (including considerably overlapping communities), where each node locally makes decisions to which potential communities it belongs. To measure quality of a cover of overlapping communities, a notion of a node contribution to modularity is introduced, and subsequently the notion of modularity is extended from partitions to covers. The final part considers a problem of network anonymization, mostly by the means of edge deletion. The point of interest is utility preservation. It is shown that a concentration on the preservation of routing abilities might damage the preservation of community structure, and vice versa.
ContributorsBakun, Oleg (Author) / Konjevod, Goran (Thesis advisor) / Richa, Andrea (Thesis advisor) / Syrotiuk, Violet R. (Committee member) / Czygrinow, Andrzej (Committee member) / Arizona State University (Publisher)
Created2011
152172-Thumbnail Image.png
Description
The primary function of the medium access control (MAC) protocol is managing access to a shared communication channel. From the viewpoint of transmitters, the MAC protocol determines each transmitter's persistence, the fraction of time it is permitted to spend transmitting. Schedule-based schemes implement stable persistences, achieving low variation in delay

The primary function of the medium access control (MAC) protocol is managing access to a shared communication channel. From the viewpoint of transmitters, the MAC protocol determines each transmitter's persistence, the fraction of time it is permitted to spend transmitting. Schedule-based schemes implement stable persistences, achieving low variation in delay and throughput, and sometimes bounding maximum delay. However, they adapt slowly, if at all, to changes in the network. Contention-based schemes are agile, adapting quickly to changes in perceived contention, but suffer from short-term unfairness, large variations in packet delay, and poor performance at high load. The perfect MAC protocol, it seems, embodies the strengths of both contention- and schedule-based approaches while avoiding their weaknesses. This thesis culminates in the design of a Variable-Weight and Adaptive Topology Transparent (VWATT) MAC protocol. The design of VWATT first required answers for two questions: (1) If a node is equipped with schedules of different weights, which weight should it employ? (2) How is the node to compute the desired weight in a network lacking centralized control? The first question is answered by the Topology- and Load-Aware (TLA) allocation which defines target persistences that conform to both network topology and traffic load. Simulations show the TLA allocation to outperform IEEE 802.11, improving on the expectation and variation of delay, throughput, and drop rate. The second question is answered in the design of an Adaptive Topology- and Load-Aware Scheduled (ATLAS) MAC that computes the TLA allocation in a decentralized and adaptive manner. Simulation results show that ATLAS converges quickly on the TLA allocation, supporting highly dynamic networks. With these questions answered, a construction based on transversal designs is given for a variable-weight topology transparent schedule that allows nodes to dynamically and independently select weights to accommodate local topology and traffic load. The schedule maintains a guarantee on maximum delay when the maximum neighbourhood size is not too large. The schedule is integrated with the distributed computation of ATLAS to create VWATT. Simulations indicate that VWATT offers the stable performance characteristics of a scheduled MAC while adapting quickly to changes in topology and traffic load.
ContributorsLutz, Jonathan (Author) / Colbourn, Charles J (Thesis advisor) / Syrotiuk, Violet R. (Thesis advisor) / Konjevod, Goran (Committee member) / Lloyd, Errol L. (Committee member) / Arizona State University (Publisher)
Created2013
150660-Thumbnail Image.png
Description
Semiconductor scaling technology has led to a sharp growth in transistor counts. This has resulted in an exponential increase on both power dissipation and heat flux (or power density) in modern microprocessors. These microprocessors are integrated as the major components in many modern embedded devices, which offer richer features and

Semiconductor scaling technology has led to a sharp growth in transistor counts. This has resulted in an exponential increase on both power dissipation and heat flux (or power density) in modern microprocessors. These microprocessors are integrated as the major components in many modern embedded devices, which offer richer features and attain higher performance than ever before. Therefore, power and thermal management have become the significant design considerations for modern embedded devices. Dynamic voltage/frequency scaling (DVFS) and dynamic power management (DPM) are two well-known hardware capabilities offered by modern embedded processors. However, the power or thermal aware performance optimization is not fully explored for the mainstream embedded processors with discrete DVFS and DPM capabilities. Many key problems have not been answered yet. What is the maximum performance that an embedded processor can achieve under power or thermal constraint for a periodic application? Does there exist an efficient algorithm for the power or thermal management problems with guaranteed quality bound? These questions are hard to be answered because the discrete settings of DVFS and DPM enhance the complexity of many power and thermal management problems, which are generally NP-hard. The dissertation presents a comprehensive study on these NP-hard power and thermal management problems for embedded processors with discrete DVFS and DPM capabilities. In the domain of power management, the dissertation addresses the power minimization problem for real-time schedules, the energy-constrained make-span minimization problem on homogeneous and heterogeneous chip multiprocessors (CMP) architectures, and the battery aware energy management problem with nonlinear battery discharging model. In the domain of thermal management, the work addresses several thermal-constrained performance maximization problems for periodic embedded applications. All the addressed problems are proved to be NP-hard or strongly NP-hard in the study. Then the work focuses on the design of the off-line optimal or polynomial time approximation algorithms as solutions in the problem design space. Several addressed NP-hard problems are tackled by dynamic programming with optimal solutions and pseudo-polynomial run time complexity. Because the optimal algorithms are not efficient in worst case, the fully polynomial time approximation algorithms are provided as more efficient solutions. Some efficient heuristic algorithms are also presented as solutions to several addressed problems. The comprehensive study answers the key questions in order to fully explore the power and thermal management potentials on embedded processors with discrete DVFS and DPM capabilities. The provided solutions enable the theoretical analysis of the maximum performance for periodic embedded applications under power or thermal constraints.
ContributorsZhang, Sushu (Author) / Chatha, Karam S (Thesis advisor) / Cao, Yu (Committee member) / Konjevod, Goran (Committee member) / Vrudhula, Sarma (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2012
Description
I travelled and worked in international fisheries policy for 7 months in preparation for this thesis. During this time I completed one internship in Rome, Italy with the Food and Agriculture Organization of the United Nations (UNFAO) and another internship on the island of Pohnpei with the Secretariat of the

I travelled and worked in international fisheries policy for 7 months in preparation for this thesis. During this time I completed one internship in Rome, Italy with the Food and Agriculture Organization of the United Nations (UNFAO) and another internship on the island of Pohnpei with the Secretariat of the Western and Central Pacific Fisheries Commission (WCPFC). From these experiences, I selected the subject of this thesis. My thesis analyzes the management system for South Pacific albacore tuna, the source stock for brands like "Chicken of the Sea" and "Starkist". South Pacific albacore tuna pass through international waters and the waters of several Pacific Island countries and territories, necessitating States to cooperate and coordinate to sustain the future viability of the stock. A case study for transboundary natural resource management, I discuss the institutional complexity that arises from managing such a resource. I use common-pool resource (CPR) theory to describe this complexity, which frames natural resource management as a collective-action problem among resource users. I first conceptualize the management system as having multiple institutional scales and multiple levels of organization. Then, employing Ostrom's 8 design principles for successful CPR management, I conduct a multi-institution analysis of the international, regional, and subregional institutions that participate in the management system. Finally, I also conduct a cross-institution analysis by examining the interactions between these institutions. I find that significant space for theoretical development exists in CPR theory for understanding complex management systems for transboundary natural resources. Furthermore, I find that interactions between institutions create linkages that could be retooled to improve the performance of the South Pacific albacore tuna management system.
ContributorsAbolhassani, Angela Maryam (Author) / Abbott, Kenneth (Thesis director) / Schoon, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2015-05
136273-Thumbnail Image.png
Description
This paper explores two areas of study: Colony Collapse Disorder and urban apiculture--the practice of keeping bees in urban areas. Additionally, this paper discusses the ways in which Colony Collapse Disorder has encouraged an increase in urban beekeeping, and the possible role of urban apiculture as a means of combatting

This paper explores two areas of study: Colony Collapse Disorder and urban apiculture--the practice of keeping bees in urban areas. Additionally, this paper discusses the ways in which Colony Collapse Disorder has encouraged an increase in urban beekeeping, and the possible role of urban apiculture as a means of combatting the negative effects of Colony Collapse Disorder. The symptoms, history, and possible causes of Colony Collapse Disorder are presented, as well as the important role that honey bees play in human agriculture. Following the discussion of Colony Collapse Disorder is a description of my urban beekeeping apprenticeship at Desert Marigold School where I kept bees, researched various hives, attended a beekeeping workshop in Tucson, and eventually built a hive and established a colony with my mentor. This paper includes a guide to beekeeping basics, as well as a guide to starting a hive based upon the lessons learned during my apprenticeship.
ContributorsRomero, Madelyn Rattan (Author) / Schoon, Michael (Thesis director) / Silcox, Holly (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2015-05
136332-Thumbnail Image.png
Description
South Mountain is the largest municipal park in the nation. It is a bundled amenity, providing a series of linked services to the surrounding communities. A dataset of 19,209 homes in 155 neighborhoods within three miles of the park was utilized in order to complete a hedonic estimation for two

South Mountain is the largest municipal park in the nation. It is a bundled amenity, providing a series of linked services to the surrounding communities. A dataset of 19,209 homes in 155 neighborhoods within three miles of the park was utilized in order to complete a hedonic estimation for two nearby urban villages, Ahwatukee Foothills and South Mountain Village. Measures of access include proximity to the park, trailhead access, and adjacency to the park. Two regressions were estimated, the first including lot characteristics and subdivision fixed effects and the second using the coefficients for each subdivision as the dependent variable. These estimates describe how the location of a house in a subdivision contributes to its conditional mean price. As a result they offer a direct basis for capturing amenities measured at the neighborhood scale on home values. Park proximity, trailhead access and adjacency were found to significantly influence the price of homes at the 5% confidence level in Ahwatukee, but not in South Mountain Village. The results of this study can be applied to issues of environmental justice and park access in determining which areas and attributes of the park are associated with a high premium. Though South Mountain was preserved some time ago, development and future preservation in the City of Phoenix can be informed by such studies.
ContributorsRamakrishna, Saritha Kambhampati (Author) / Abbott, Joshua (Thesis director) / Smith, V. Kerry (Committee member) / Schoon, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Economics Program in CLAS (Contributor) / Department of English (Contributor)
Created2015-05
135548-Thumbnail Image.png
Description
This paper explores the contested relationships between nature, culture, and gender. In order to analyze these relationships, we look specifically at outdoor recreation. Furthermore, we employ poststructuralist feminist theory in order to produce three frameworks; the first of which is titled Mother Nature’s Promiscuous Past. Rooted in Old World and

This paper explores the contested relationships between nature, culture, and gender. In order to analyze these relationships, we look specifically at outdoor recreation. Furthermore, we employ poststructuralist feminist theory in order to produce three frameworks; the first of which is titled Mother Nature’s Promiscuous Past. Rooted in Old World and colonial values, this framework illustrates the flawed feminization of nature by masculinity, and its subsequent extortion of anything related to femininity — including women and nature itself. This belief barred women from nature, resulting in a lack of access for women to outdoor recreation.
Our second framework, titled The Pleasurable Potential of Outdoor Recreation, cites second-wave feminism as a catalyst for women’s participation in wilderness exploration and outdoor recreation. The work of radical feminists and the women’s liberation movement in 1960s and 1970s empowered women at home, in the workplace, and eventually, in the outdoors; women reclaimed their wilderness, yet they continued to employ Framework One’s feminization of nature. Ecofeminsim brought together nature and women, seeking to bring justice to two groups wronged by the same entity: masculinity. In this context, outdoor recreation is empowering for women.
Despite the potential of Framework Two to reinscribe and better the experiences of women in outdoor recreation, we argue that both Frameworks One and Two perpetuate the gender binary and the nature/culture binary, because they are based upon the notion that women are in fact fundamentally different and separate from men, the notion that nature is an entity separate from culture, or human society, as well as the notion that nature is in fact a feminine entity.
Our third framework, Deer Pay No Mind to Your Genitals, engages poststructuralism, asserting that outdoor recreation and activities that occur in nature can serve to destabilize and deconstruct notions of the gender binary. However, we argue that care must be exercised during this process as not to perpetuate the problematic nature/culture binary, a phenomenon that is unproductive in terms of both sustainability and gender liberation. Outdoor recreation has been used by many as a tool to deconstruct numerous societal constraints, including the gender binary; this, however, continues to attribute escapist and isolationist qualities toward nature, and therefore perpetuating the nature/culture divide. Ultimately, we argue outdoor recreation can and should be used as a tool deconstruct the gender binary, however needs to account for the fact that if nature is helping to construct elements of culture, then the two cannot be separate.
ContributorsPolick-Kirkpatrick, Kaelyn (Co-author) / Downing, Haley Marie (Co-author) / Dove-Viebahn, Aviva (Thesis director) / Schoon, Michael (Committee member) / School of Sustainability (Contributor) / School of Social Transformation (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137003-Thumbnail Image.png
DescriptionA small-scale aquaponic system was created to demonstrate the sustainable properties of the system as well as the effectiveness of raising fish and plants symbiotically.
ContributorsSerna, Desiree Marie (Author) / Schoon, Michael (Thesis director) / Peterson, Greg (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05