Matching Items (188)
133622-Thumbnail Image.png
Description
The focus of this study was to address the problem of prohibitively expensive LiDARs currently being used in autonomous vehicles by analyzing the capabilities and shortcomings of affordable LiDARs as replacements. This involved the characterization of affordable LiDARs that are currently available on the market. The characterization of the LiDARs

The focus of this study was to address the problem of prohibitively expensive LiDARs currently being used in autonomous vehicles by analyzing the capabilities and shortcomings of affordable LiDARs as replacements. This involved the characterization of affordable LiDARs that are currently available on the market. The characterization of the LiDARs involved testing refresh rates, field of view, distance the sensors could detect, reflectivity, and power of the emitters. The four LiDARs examined in this study were the Scanse, RPLIDAR A2, LeddarTech Vu8, and LeddarTech M16. Of these low cost LiDAR options we find the two best options for use in affordable autonomous vehicle sensors to be the RPLIDAR A2 and the LeddarTech M16.
ContributorsMurphy, Thomas Joseph (Co-author) / Gamal, Eltohamy (Co-author) / Yu, Hongbin (Thesis director) / Houghton, Todd (Committee member) / Electrical Engineering Program (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133639-Thumbnail Image.png
Description
Current technology does not allow for the full amount of power produced by solar arrays (PV) on spacecraft to be utilized. The arrays are designed with non-reconfigurable architectures and sent on fifteen to twenty year long missions. They cannot be changed once they are in space, so the arrays are

Current technology does not allow for the full amount of power produced by solar arrays (PV) on spacecraft to be utilized. The arrays are designed with non-reconfigurable architectures and sent on fifteen to twenty year long missions. They cannot be changed once they are in space, so the arrays are designed for the end of life. Throughout their lifetime, solar arrays can degrade in power producing capabilities anywhere from 20% to 50%. Because there is such a drastic difference in the beginning and end of life power production, and because they cannot be reconfigured, a new design has been found necessary in order to increase power production. Reconfiguration allows the solar arrays to achieve maximum power producing capabilities at both the beginning and end of their lives. With the potential to increase power production by 50%, the reconfiguration design consists of a switching network to be able to utilize any combination of cells. The design for reconfiguration must meet the power requirements of the solar array. This thesis will explore different designs for reconfiguration, as well as possible switches for implementation. It will also review other methods to increase power production, as well as discuss future work in this field.
ContributorsJohnson, Everett Hope (Author) / Kitchen, Jennifer (Thesis director) / Ozev, Sule (Committee member) / School of International Letters and Cultures (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133873-Thumbnail Image.png
Description
This documentary shows how what we eat affects our planet. Meat and dairy consumption is the number one pollutant to the environment and yet it is often not discussed among environmentalists. There is so much devastation taking place on our planet due the animal agriculture industry: air pollution, and water

This documentary shows how what we eat affects our planet. Meat and dairy consumption is the number one pollutant to the environment and yet it is often not discussed among environmentalists. There is so much devastation taking place on our planet due the animal agriculture industry: air pollution, and water contamination, destruction of the the Amazon rainforests. Natural resources, such as water - it takes one thousand gallons of water to produce one gallon of milk - are being over consumed. Land is being cleared of trees at a massive scale in the Amazon to make more room for land to raise livestock and grow its feed. Following the stories and experiences of several ASU students and other community members, the documentary highlights this connection between food and its effects on the environment and what people can do to make a difference.
ContributorsKoka, Vaishnavi (Author) / Barca, Lisa (Thesis director) / Meloy, Elizabeth (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133580-Thumbnail Image.png
Description
In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In

In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In this system, an autonomous thrower will detect a desired target through the use of image processing. The launch angle and direction necessary to hit the target will then be calculated, followed by the launching of the ball. The smart catcher will then detect the ball as it is in the air, calculate its expected landing location based on its initial trajectory, and adjust its position so that the ball lands in the center of the target. The thrower will then proceed to compare the actual landing position with the position where it expected the ball to land, and adjust its calculations accordingly for the next throw. By utilizing this method of feedback, the throwing arm will be able to automatically correct itself. This means that the thrower will ideally be able to hit the target exactly in the center within a few throws, regardless of any additional uncertainty in the system. This project will focus of the controller and image processing components necessary for the autonomous throwing arm to be able to detect the position of the target at which it will be aiming, and for the smart catcher to be able to detect the position of the projectile and estimate its final landing position by tracking its current trajectory.
ContributorsLundberg, Kathie Joy (Co-author) / Thart, Amanda (Co-author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
A bicycle tour is an unusual thing, one that often defies the expectations of the first-time touring cyclist. In this report, the experience of touring cycling is examined in two parts: a narrative documenting the author's tour down the Pacific Coast, and a reflective work that examines the journey and

A bicycle tour is an unusual thing, one that often defies the expectations of the first-time touring cyclist. In this report, the experience of touring cycling is examined in two parts: a narrative documenting the author's tour down the Pacific Coast, and a reflective work that examines the journey and the major themes which persist throughout. In examining the trip, two major dichotomies arose as themes. The first major dichotomy is found in the expectation of a solitary experience for one who is touring solo. In reality, tours are often built on the goodwill of others in the cycling community. On this particular tour, a website called Warmshowers was central to this point. By offering lodging to tired touring cyclists who would otherwise camp alone, this website serves to bring the cycling community together, and allows for connections that would otherwise never exist to be formed. However, it is true that much of a solo tour is, in fact, spent in solitude. This allows a cyclist long periods for self-reflection and meditation, an opportunity to strengthen one's connection with oneself and the natural world around them. The second is a contrast between the planning that goes into embarking on a long trip and the entropy and randomness that inevitably causes the experience to wildly differ from said plan. When the unexpected occurs, there are two options: to reject the unknown and cling to the framework one sets out for themselves, or to embrace the unexpected and see where it takes you. Often, diverting from the plan can allow for new and exciting experiences. However, there is also value to the framework and stability afforded by adhering to a plan. Through these experiences and more, a bicycle tour changes the way one looks at the world.
ContributorsReid, Evan Calderwood (Author) / Fette, Donald (Thesis director) / Loebenberg, Abby (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137247-Thumbnail Image.png
Description
A novel strain sensing procedure using an optical scanning methodology and diffraction grating is explored. The motivation behind this study is due to uneven thermal strain distribution across semiconductor chips that are composed of varying materials. Due to the unique properties of the materials and the different coefficients of thermal

A novel strain sensing procedure using an optical scanning methodology and diffraction grating is explored. The motivation behind this study is due to uneven thermal strain distribution across semiconductor chips that are composed of varying materials. Due to the unique properties of the materials and the different coefficients of thermal expansion (CTE), one can expect the material that experiences the highest strain to be the most likely failure point of the chip. As such, there is a need for a strain sensing technique that offers a very high strain sensitivity, a high spatial resolution while simultaneously achieving a large field of view. This study goes through the optical setup as well as the evolution of the optical grating in an effort to improve the strain sensitivity of this setup.
ContributorsChen, George (Co-author) / Ma, Teng (Co-author) / Liang, Hanshuang (Co-author) / Song, Zeming (Co-author) / Nguyen, Hoa (Co-author) / Yu, Hongbin (Thesis director) / Jiang, Hanqing (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
137283-Thumbnail Image.png
Description
Electroencephalogram (EEG) used simultaneously with video monitoring can record detailed patient physiology during a seizure to aid diagnosis. However, current patient monitoring systems typically require a patient to stay in view of a fixed camera limiting their freedom of movement. The goal of this project is to design an automatic

Electroencephalogram (EEG) used simultaneously with video monitoring can record detailed patient physiology during a seizure to aid diagnosis. However, current patient monitoring systems typically require a patient to stay in view of a fixed camera limiting their freedom of movement. The goal of this project is to design an automatic patient monitoring system with software to track patient movement in order to increase a patient's mobility. This report discusses the impact of an automatic patient monitoring system and the design steps used to create and test a functional prototype.
ContributorsBui, Robert Truong (Author) / Frakes, David (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
137494-Thumbnail Image.png
Description
This project examines the science of electric field sensing and completes experiments, gathering data to support its utility for various applications. The basic system consists of a transmitter, receiver, and lock-in amplifier. The primary goal of the study was to determine if such a system could detect a human disturbance,

This project examines the science of electric field sensing and completes experiments, gathering data to support its utility for various applications. The basic system consists of a transmitter, receiver, and lock-in amplifier. The primary goal of the study was to determine if such a system could detect a human disturbance, due to the capacitance of a human body, and such a thesis was supported. Much different results were obtained when a person disturbed the electric field transmitted by the system than when other types of objects, such as chairs and electronic devices, were placed in the field. In fact, there was a distinct difference between persons of varied sizes as well. This thesis goes through the basic design of the system and the process of experimental design for determining the capabilities of such an electric field sensing system.
ContributorsBranham, Breana Michelle (Author) / Allee, David (Thesis director) / Papandreou-Suppappola, Antonia (Committee member) / Phillips, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2013-05
137496-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis.

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C. The economic calculations show the expected energy cost savings for Arizona residents.
ContributorsHaines, Brent Robert (Author) / Roedel, Ronald (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
137463-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C.
ContributorsDenke, Steven Michael (Author) / Roedel, Ron (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05