Matching Items (9)
156241-Thumbnail Image.png
Description
In this study, two novel sorbents (zeolite 4A and sodium polyacrylate) are tested to investigate if utilizing ultrasonic acoustic energy could decrease the amount of time and overall energy required to regenerate these materials for use in cooling applications. To do this, an experiment was designed employing a cartridge heater

In this study, two novel sorbents (zeolite 4A and sodium polyacrylate) are tested to investigate if utilizing ultrasonic acoustic energy could decrease the amount of time and overall energy required to regenerate these materials for use in cooling applications. To do this, an experiment was designed employing a cartridge heater and a piezoelectric element to be simultaneously providing heat and acoustic power to a custom designed desorption bed while measuring the bed mass and sorbent temperature at various locations. The results prove to be promising showing that early in the desorption process ultrasound may expedite the desorption process in zeolite by as much as five times and in sodium polyacrylate as much as three times in comparison to providing heat alone. The results also show that in zeolite desorption utilizing ultrasound may be particularly beneficial to initiate desorption whereas in sodium polyacrylate ultrasound appears most promising in the after a temperature threshold is met. These are exciting results and may prove to be significant in the future as more novel heat-based cooling cycles are developed.
ContributorsBertrand, Weston Kyle (Author) / Phelan, Patrick (Thesis advisor) / Bocanegra, Luis (Committee member) / Wang, Liping (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2018
156483-Thumbnail Image.png
Description
The concept of this thesis came up as a part of the efforts being devoted around the world to reduce energy consumption, CO2 emissions, global warming and ozone layer depletion. In the United States, HVAC units in residential buildings consumed about 350 billion kWh in 2017 [1],[2]. Although HVAC manufacturers

The concept of this thesis came up as a part of the efforts being devoted around the world to reduce energy consumption, CO2 emissions, global warming and ozone layer depletion. In the United States, HVAC units in residential buildings consumed about 350 billion kWh in 2017 [1],[2]. Although HVAC manufacturers are investing in new technologies and more efficient products to reduce energy consumption, there is still room for further improvement.

One way of reducing cooling and heating energy in residential buildings is by allowing the centralized HVAC unit to supply conditioned air to only occupied portions of the house by applying smart HVAC zoning. According to the United States Energy Information Administration [3], the percentage of houses equipped with centralized HVAC units is over 70%, which makes this thesis applicable to the majority of houses in the United States. This thesis proposes to implement HVAC zoning in a smart way to eliminate all human errors, such as leaving the AC unit on all day, which turns out to be causing a serious amount of energy to be wasted.

The total amount of energy that could be saved by implementing the concepts presented in this thesis in all single-family houses in the U.S. is estimated to be about 156 billion kWh annually. This amount of energy reduction is proportional to the electricity bills and the amount of dollars paid annually on energy that is technically being wasted.
ContributorsFairag, Amr (Author) / Phelan, Patrick (Thesis advisor) / Bocanegra, Luis (Committee member) / Shuaib, Abdelrahman (Committee member) / Arizona State University (Publisher)
Created2018
132814-Thumbnail Image.png
Description
Current applications of the traditional vapor-compression refrigeration system are not feasible. Space cooling and refrigeration systems that employ vapor-compression refrigeration cycles utilize harmful refrigerants, produce large amounts of carbon dioxide, and have high energy consumption. Adsorption cooling technology is seen as a possible alternative to traditional vapor-compression refrigeration systems. The

Current applications of the traditional vapor-compression refrigeration system are not feasible. Space cooling and refrigeration systems that employ vapor-compression refrigeration cycles utilize harmful refrigerants, produce large amounts of carbon dioxide, and have high energy consumption. Adsorption cooling technology is seen as a possible alternative to traditional vapor-compression refrigeration systems. The low-grade heat requirement and eco-friendly adsorbent and refrigerant materials make adsorption cooling an attractive technology. Adsorption cooling technology employs the adsorption principle—the phenomenon in which an adsorbate fluid adheres to the surfaces and micropores of an adsorbent solid. The purpose of this study was to explore the adsorption cooling process through the use of a prototype adsorption test bed design. A basic intermittent adsorption cooling cycle was utilized for the test bed design. Several requirements for the design include low-cost, simple fabrication, and capable of holding a vacuum. In this study, an experiment was carried out to analyze the desorption process, in which the original weight of adsorbed water was compared to the weight of the desorbed water. The system pressure was decreased to sub-atmospheric absolute pressure of 16.67 kPa in order to increase the desorption rate and drive the desorption process. A hot water pump provided 81.6 °C hot water to heat the adsorption bed. The desorption process lasted for a duration of 162 minutes. The experiment resulted in 3.60 g (16.04%) of the initial adsorbed water being desorbed during the desorption process. The study demonstrates the potential of adsorption cooling. This paper outlines the design, fabrication, and analysis of a prototype adsorption cooling test bed.
Created2019-05
168691-Thumbnail Image.png
Description
Rooftop photovoltaic (PV) systems are becoming increasingly common as the efficiency of solar panels increase, the cost decreases, and worries about climate change increase and become increasingly prevalent. An under explored aspect of rooftop solar systems is the thermal effects that the systems have on the local area. These effects

Rooftop photovoltaic (PV) systems are becoming increasingly common as the efficiency of solar panels increase, the cost decreases, and worries about climate change increase and become increasingly prevalent. An under explored aspect of rooftop solar systems is the thermal effects that the systems have on the local area. These effects are investigated in this paper to determine the overall impact that solar systems have on the heating and cooling demands of a building as well as on the efficiency losses of the solar panels due to the increased temperature on the panels themselves. The specific building studied in this paper is the Goldwater Center for Science and Engineering located in the Tempe campus of Arizona State University. The ambient conditions were modeled from a typical July day in Tempe. A numerical model of a simple flat roof was also created to find the average rooftop temperature throughout the day. Through this study it was determined that solar panels cause a decrease in the maximum temperature of the rooftop during the day, while reducing the ability of the roof to be cooled during the night. The solar panels also saw a high temperature during the day during the most productive time of day for solar panels, which saw a decrease in total energy production for the panels.
ContributorsNaber, Nicholas (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Bocanegra, Luis (Committee member) / Arizona State University (Publisher)
Created2022
171719-Thumbnail Image.png
Description
The energy consumed by buildings occupies a large part of energy consumption and carbon emissions. Meanwhile, enormous amounts of waste heat from buildings and the swiftly increasing demand for electric energy have become one of the essential contradictions that scientists pay attention to. As a result, how to make use

The energy consumed by buildings occupies a large part of energy consumption and carbon emissions. Meanwhile, enormous amounts of waste heat from buildings and the swiftly increasing demand for electric energy have become one of the essential contradictions that scientists pay attention to. As a result, how to make use of the waste heat to generate electric energy becomes an appreciable research topic. In the latest research, it is common to convert the thermal energy generated by the temperature difference into electrical energy using the Seebeck effect. In previous research, a prototype of a thermogalvanic cell with graphite as the electrodes and a combination of Iron (II) and Iron (III) perchlorate salts (Fe(ClO4)2, Fe(ClO4)3) as the electrolyte, and with a 3D-printed Schwarz-P structure, was designed and assembled for achieving the energy conversion. The research shows that the incorporation of a 3D-printed Schwarz-P structure improves the thermogalvanic cell’s performance and increases the temperature difference across the cell. Here we focus on the same type of thermogalvanic cell prototype and keep the same working temperature difference but use different electrolyte concentrations (0.05, 0.10, 0.15, 0.20, and 0.25 mol/L) to measure the electric output, including open-circuit voltage, short-circuit current, and maximum output power, and the internal resistance. The results indicate that the open-circuit voltage and maximum output power increase with the rise of electrolyte concentrations, and the short-circuit current decreases with the rise of electrolyte concentrations.
ContributorsHan, Xiaochuan (Author) / Phelan, Patric (Thesis advisor) / Huang, Huei-Ping (Committee member) / Bocanegra, Luis (Committee member) / Arizona State University (Publisher)
Created2022
158810-Thumbnail Image.png
Description
Water desalination has become one of the viable solutions to provide drinking water in regions with limited natural resources. This is particularly true in small communities in arid regions, which suffer from low rainfall, declining surface water and increasing salinity of groundwater. Yet, current desalination methods are difficult to be

Water desalination has become one of the viable solutions to provide drinking water in regions with limited natural resources. This is particularly true in small communities in arid regions, which suffer from low rainfall, declining surface water and increasing salinity of groundwater. Yet, current desalination methods are difficult to be implemented in these areas due to their centralized large-scale design. In addition, these methods require intensive maintenance, and sometimes do not operate in high salinity feedwater. Membrane distillation (MD) is one technology that can potentially overcome these challenges and has received increasing attention in the last 15 years. The driving force of MD is the difference in vapor pressure across a microporous hydrophobic membrane. Compared to conventional membrane-based technologies, MD can treat high concentration feedwater, does not need intensive pretreatment, and has better fouling resistance. More importantly, MD operates at low feed temperatures and so it can utilize low–grade heat sources such as solar energy for its operation. While the integration of solar energy and MD was conventionally indirect (i.e. by having two separate systems: a solar collector and an MD module), recent efforts were focused on direct integration where the membrane itself is integrated within a solar collector aiming to have a more compact, standalone design suitable for small-scale applications. In this dissertation, a comprehensive review of these efforts is discussed in Chapter 2. Two novel direct solar-powered MD systems were proposed and investigated experimentally: firstly, a direct contact MD (DCMD) system was designed by placing capillary membranes within an evacuated tube solar collector (ETC) (Chapter 3), and secondly, a submerged vacuum MD (S-VMD) system that uses circulation and aeration as agitation techniques was investigated (Chapter 4). A maximum water production per absorbing area of 0.96 kg·m–2·h–1 and a thermal efficiency of 0.51 were achieved. A final study was conducted to investigate the effect of ultrasound in an S-VMD unit (Chapter 5), which significantly enhanced the permeate flux (up to 24%) and reduced the specific energy consumption (up to 14%). The results add substantially to the understanding of integrating ultrasound with different MD processes.
ContributorsBamasag, Ahmad (Author) / Phelan, Patrick E (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Wang, Liping (Committee member) / Bocanegra, Luis (Committee member) / Roedel, Ronald (Committee member) / Arizona State University (Publisher)
Created2020
131465-Thumbnail Image.png
Description
The temperature of exhaust pipes can be dangerous in dry areas where there is a lot of brush. The temperatures of exhaust pipes can reach a high enough temperature to start a fire if touching the dry brush, which ignites around 300°C. The goal of this project was to explore

The temperature of exhaust pipes can be dangerous in dry areas where there is a lot of brush. The temperatures of exhaust pipes can reach a high enough temperature to start a fire if touching the dry brush, which ignites around 300°C. The goal of this project was to explore different techniques to limit the possibility of these brush fires. Specifically, different methods were explored to reduce the temperature of the pipe that would be contacting the brush. Fires can begin within seconds of contacting the hot exhaust pipes [10]. This experiment found that of the three options tested: exhaust wrap, heat sink with thermoelectric devices, and high temperature paint, adding a heat shield/sink is the best way to limit the high temperatures from igniting the brush. There was a cooling difference of nearly 100°C when a heat shield/sink was added to the bare pipe. The additional thermal mass as well as the finned heat sinks attached to the heat sink helped dissipate the heat from the pipe and release the waste heat into the surroundings. The increase in surface area in correspondence with forced convection from the surrounding air lowered the temperature of the metal in contact with the dry brush.
ContributorsHodges, Andrew (Author) / Benson, David (Thesis director) / Bocanegra, Luis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132733-Thumbnail Image.png
Description
Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building

Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building and maintenance costs, and the isolation of nuclear plants from populated areas. The goal of this project was to analyze the thermal performance of nanocrystalline copper tantalum (NC Cu-Ta) inside the steam generator of a pressurized water reactor to see how much the size of these units could be reduced without affecting the amount of heat transferred through it. The analysis revealed that using this material, with its higher thermal conductivity than the traditional Inconel Alloy 600 that is typically used in steam generators, it is possible to reduce the height of a steam generator from 21 meters to about 18.6 meters, signifying a 11.6% reduction in height. This analysis also revealed a diminishing return that occurs with increasing the thermal conductivity on both reducing the required heat transfer area and increasing the overall heat transfer coefficient.
ContributorsRiese, Alexander (Author) / Phelan, Patrick (Thesis director) / Bocanegra, Luis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
190810-Thumbnail Image.png
Description
Failures in the cold chain, the system of refrigerated storage and transport that provides fresh produce or other essentials to be maintained at desired temperatures and environmental conditions, lead to food and energy waste. The mini container (MC) concept is introduced as an alternative to conventional refrigerated trucks (“reefers”), particularly

Failures in the cold chain, the system of refrigerated storage and transport that provides fresh produce or other essentials to be maintained at desired temperatures and environmental conditions, lead to food and energy waste. The mini container (MC) concept is introduced as an alternative to conventional refrigerated trucks (“reefers”), particularly for small growers. The energy consumption and corresponding GHG emissions for transporting tomatoes in two cities representing contrasting climates is analyzed for conventional reefers and the proposed mini containers. The results show that, for partial reefer loads, using the MCs reduces energy consumption and GHG emissions. The transient behavior of the vapor compression refrigeration cycle is analyzed by considering each component as a “lumped” system, and the resulting sub-models are solved using the Runge Kutta 4th-order method in a MATLAB code at hot and cold ambient temperatures. The time needed to reach steady state temperatures and the temperature values are determined. The maximum required compressor work in the transient phase and at steady state are computed, and as expected, as the ambient temperature increases, both values increase. Finally, the average coefficient of performance (COP) is determined for varying heat transfer coefficient values for the condenser and for the evaporator. The results show that the average COP increases as heat transfer coefficient values for the condenser and the evaporator increase. Starting the system from rest has an adverse effect on the COP due to the higher compressor load needed to change the temperature of the condenser and the evaporator. Finally, the impact on COP is analyzed by redirecting a fraction of the cold exhaust air to provide supplemental cooling of the condenser. It is noted that cooling the condenser improves the system's performance better than cooling the fresh air at 0% of returned air to the system.To sum up, the dissertation shows that the comparison between the conventional reefer and the MC illustrates the promising advantages of the MC, then a transient analysis is developed for deeply understanding the behaviors of the system component parameters, which leads finally to improvements in the system to enhance its performance.
ContributorsSyam, Mahmmoud Muhammed (Author) / Phelan, Patrick (Thesis advisor) / Villalobos, Rene (Thesis advisor) / Huang, Huei-Ping (Committee member) / Bocanegra, Luis (Committee member) / Al Omari, Salah (Committee member) / Arizona State University (Publisher)
Created2023