Matching Items (441)
137802-Thumbnail Image.png
Description
Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer

Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer patients were used to discover these tumor associated biomarkers on protein microarrays. Six candidate biomarkers were discovered from 22 heavy chain-only variable region antibody fragments screened. Validation tests are necessary to confirm the tumorgenicity of these antigens. However, the use of single-chain variable autoantibody fragments presents a novel platform for diagnostics and cancer therapeutics.
ContributorsSharman, M. Camila (Author) / Magee, Dewey (Mitch) (Thesis director) / Wallstrom, Garrick (Committee member) / Petritis, Brianne (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / Virginia G. Piper Center for Personalized Diagnostics (Contributor) / Biodesign Institute (Contributor)
Created2012-12
137267-Thumbnail Image.png
Description
It is important to consider factors that contribute to successful fertilization and the development of viable offspring. Better understanding the factors that contribute to infertility can be used to assist in the development of viable offspring, especially for human beings looking to successfully reproduce. Identifying paternal effect genes, genes that

It is important to consider factors that contribute to successful fertilization and the development of viable offspring. Better understanding the factors that contribute to infertility can be used to assist in the development of viable offspring, especially for human beings looking to successfully reproduce. Identifying paternal effect genes, genes that come from the father, introduces more targets that can be manipulated to produce specific reproductive effects. Use of Drosophila melanogaster as a model to study reproduction has increased, in part, due to the use of the GAL4 system. In this system, the GAL4 gene encodes an 881 amino acid protein that binds to the 4-site Upstream Activating Sequence (UAS) to induce transcription of the gene of interest. These sequences constitute the two components of the system: the driver (GAL4) and the responder (gene of interest) \u2014 each of which is maintained as a separate parental line. Effects of the GAL4 driver line "driving" transcription of the responder can be assessed by examining the offspring. One of the more common uses of the GAL4 system involves analyzing phenotypic effects of reducing or eliminating expression of a target gene through the induction of RNAi transcription, which often results in toxicity, lethality, or reduced viability. Utilizing these principles, we strove to demonstrate the effect of knocking down the expression of testis-specific sperm-leucyl-aminopeptidases gene CG13340 on progeny by inducing expression of RNAi with two distinct GAL4 driver lines - one with a nonspecific actin-binding activation sequence and the other with a testis-specific activation sequence. Comparison of both GAL4 driver lines to crosses using N01 wild type ("wt") flies verify that inducing RNAi transcription using the GAL4 system results in reduction of proper offspring development. Further studies using D. melanogaster and the GAL4 system can improve knowledge of factors contributing to male fertility and also be applied to better understand mammalian, specifically human, fertility.
ContributorsEvans, Donna Marie (Author) / Karr, Timothy L. (Thesis director) / Roland, Kenneth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2014-05
136379-Thumbnail Image.png
Description
Methicillin-Resistant Staphylococcus aureus (MRSA) infections are a major challenge to healthcare professionals. Treatment of MRSA is expensive, and otherwise avoidable deaths occur every year in the United States due to MRSA infections. Additionally, such infections lengthen patients’ stays in hospitals, keeping them out of work and adversely affecting the economy.

Methicillin-Resistant Staphylococcus aureus (MRSA) infections are a major challenge to healthcare professionals. Treatment of MRSA is expensive, and otherwise avoidable deaths occur every year in the United States due to MRSA infections. Additionally, such infections lengthen patients’ stays in hospitals, keeping them out of work and adversely affecting the economy. Beta lactam antibiotics used to be highly effective against S. aureus infections, but resistance mechanisms have rendered methicillin, oxacillin, and other beta lactam antibiotics ineffective against these infections. A promising avenue for MRSA treatment lies in the use of synthetic antibodies—molecules that bind with specificity to a given compound. Synbody 14 is an example of such a synbody, and has been designed with MRSA treatment in mind. Mouse model studies have even associated Syn14 treatment with reduced weight loss and morbidity in MRSA-infected mice. In this experiment, in vitro activity of Syn 14 and oxacillin was assessed. Early experiments measured Syn 14 and oxacillin’s effectiveness in inhibiting colony growth in growth media, mouse serum, and mouse blood. Syn14 and oxacillin had limited efficacy against USA300 strain MRSA, though interestingly it was noted that Syn14 outperformed oxacillin in mouse serum and whole mouse blood, indicating the benefits of its binding properties. A second experiment measured the impact that a mix of oxacillin and Syn 14 had on colony growth, as well as the effect of adding them simultaneously or one after the other. While use of either bactericidal alone did not show a major inhibitory effect on USA300 MRSA colony growth, their use in combination showed major decreases in colony growth. Moreover, it was found that unlike other combination therapies, Syn14 and oxacillin did not require simultaneous addition to MRSA cells to achieve inhibition of cell growth. They merely required that Syn14 be added first. This result suggests Syn14’s possible utility in therapeutic settings, as the time insensitivity of synergy removes a major hurdle to clinical use—the difficulty in ensuring that two drugs reach an affected area at the same time. Syn14 remains a promising antimicrobial agent, and further study should focus on its precise mechanism of action and suitability in clinical treatment of MRSA infections.
ContributorsMichael, Alexander (Author) / Diehnelt, Chris (Thesis director) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
141465-Thumbnail Image.png
Description

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children with ASD, and significantly worsen their behavior and their quality of life. Here we first summarize previously published data supporting that GI dysfunction is common in individuals with ASD and the role of the microbiota in ASD. Second, by comparing with other publically available microbiome datasets, we provide some evidence that the shifted microbiota can be a result of westernization and that this shift could also be framing an altered immune system. Third, we explore the possibility that gut–brain interactions could also be a direct result of microbially produced metabolites.

ContributorsKrajmalnik-Brown, Rosa (Author) / Lozupone, Catherine (Author) / Kang, Dae Wook (Author) / Adams, James (Author) / Biodesign Institute (Contributor)
Created2015-03-12
149386-Thumbnail Image.png
Description
Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity of a given peptide in relation to a predetermined protein

Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity of a given peptide in relation to a predetermined protein target. The predictive performance of computational models of interactions of intermediate-length peptides with proteins can be improved by taking into account the stochastic nature of the encounter and binding dynamics. A theoretical case is made for the hypothesis that, because of the flexibility of the peptide and the structural complexity of the target protein, interactions are best characterized by an ensemble of possible bound configurations rather than a single “lock and key” fit. A model incorporating these factors is proposed and evaluated. A comprehensive dataset of 3,924 peptide-protein interface structures was extracted from the Protein Data Bank (PDB) and descriptors were computed characterizing the geometry and energetics of each interface. The characteristics of these interfaces are shown to be generally consistent with the proposed model, and heuristics for design and selection of peptide ligands are derived. The curated and energy-minimized interface structure dataset and a relational database containing the detailed results of analysis and energy modeling are made publicly available via a web repository. A novel analytical technique based on the proposed theoretical model, Virtual Scanning Probe Mapping (VSPM), is implemented in software to analyze the interaction between a target protein of known structure and a peptide of specified sequence, producing a spatial map indicating the most likely peptide binding regions on the protein target. The resulting predictions are shown to be superior to those of two other published methods, and support the validity of the stochastic binding model.
ContributorsEmery, Jack Scott (Author) / Pizziconi, Vincent B (Thesis advisor) / Woodbury, Neal W (Thesis advisor) / Guilbeau, Eric J (Committee member) / Stafford, Phillip (Committee member) / Taylor, Thomas (Committee member) / Towe, Bruce C (Committee member) / Arizona State University (Publisher)
Created2010
136359-Thumbnail Image.png
Description
Bacteria with antibiotic resistance are becoming a growing concern as the number of infections they are causing continue to increase. Many potential solutions are being researched in order to combat these pathogens. One such microbe is Pseudomonas aeruginosa, which causes acute and chronic human infections. It frequently colonizes the lungs

Bacteria with antibiotic resistance are becoming a growing concern as the number of infections they are causing continue to increase. Many potential solutions are being researched in order to combat these pathogens. One such microbe is Pseudomonas aeruginosa, which causes acute and chronic human infections. It frequently colonizes the lungs of cystic fibrosis patients and is deadly. For these reasons, P. aeruginosa has been heavily studied in order to determine a solution to antibiotic resistance. One possible solution is the development of synbodies, which have been developed at the Biodesign Institute at Arizona State University. Synbodies are constructed from peptides that have antibacterial activity and were determined to have specificity for a target bacterium. These synbodies were tested in this study to determine whether or not some of them are able to inhibit P. aeruginosa growth. P. aeruginosa can also form multicellular communities called biofilms and these are known to cause approximately 65% of all human infections. After conducting minimum inhibitory assays, the efficacy of certain peptides and synbodies against biofilm inhibition was assessed. A recent study has shown that low concentrations of a specific peptide can cause biofilm disruption, where the biofilm structure breaks apart and the cells within it disperse into the supernatant. Taking into account this study and peptide data regarding biofilm inhibition from Dr. Aurélie Crabbé’s lab, screened peptides were tested against biofilm to see if dispersion would occur.
Created2015-05
130364-Thumbnail Image.png
Description
Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the

Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
ContributorsSun, Qian (Author) / Muckatira, Sherin (Author) / Yuan, Lei (Author) / Ji, Shuiwang (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-12-03
130365-Thumbnail Image.png
Description
Background
“Stoichioproteomics” relates the elemental composition of proteins and proteomes to variation in the physiological and ecological environment. To help harness and explore the wealth of hypotheses made possible under this framework, we introduce GRASP (http://www.graspdb.net), a public bioinformatic knowledgebase containing information on the frequencies of 20 amino acids and atomic

Background
“Stoichioproteomics” relates the elemental composition of proteins and proteomes to variation in the physiological and ecological environment. To help harness and explore the wealth of hypotheses made possible under this framework, we introduce GRASP (http://www.graspdb.net), a public bioinformatic knowledgebase containing information on the frequencies of 20 amino acids and atomic composition of their side chains. GRASP integrates comparative protein composition data with annotation data from multiple public databases. Currently, GRASP includes information on proteins of 12 sequenced Drosophila (fruit fly) proteomes, which will be expanded to include increasingly diverse organisms over time. In this paper we illustrate the potential of GRASP for testing stoichioproteomic hypotheses by conducting an exploratory investigation into the composition of 12 Drosophila proteomes, testing the prediction that protein atomic content is associated with species ecology and with protein expression levels.
Results
Elements varied predictably along multivariate axes. Species were broadly similar, with the D. willistoni proteome a clear outlier. As expected, individual protein atomic content within proteomes was influenced by protein function and amino acid biochemistry. Evolution in elemental composition across the phylogeny followed less predictable patterns, but was associated with broad ecological variation in diet. Using expression data available for D. melanogaster, we found evidence consistent with selection for efficient usage of elements within the proteome: as expected, nitrogen content was reduced in highly expressed proteins in most tissues, most strongly in the gut, where nutrients are assimilated, and least strongly in the germline.
Conclusions
The patterns identified here using GRASP provide a foundation on which to base future research into the evolution of atomic composition in Drosophila and other taxa.
ContributorsGilbert, James D. J. (Author) / Acquisti, Claudia (Author) / Martinson, Holly M. (Author) / Elser, James (Author) / Kumar, Sudhir (Author) / Fagan, William F. (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2013-09-04
130366-Thumbnail Image.png
Description
Background
The purpose of this study is to determine the feasibility of three widely used wearable sensors in research settings for 24 h monitoring of sleep, sedentary, and active behaviors in middle-aged women.
Methods
Participants were 21 inactive, overweight (M Body Mass Index (BMI) = 29.27 ± 7.43) women, 30 to 64 years (M = 45.31 ± 9.67). Women were instructed

Background
The purpose of this study is to determine the feasibility of three widely used wearable sensors in research settings for 24 h monitoring of sleep, sedentary, and active behaviors in middle-aged women.
Methods
Participants were 21 inactive, overweight (M Body Mass Index (BMI) = 29.27 ± 7.43) women, 30 to 64 years (M = 45.31 ± 9.67). Women were instructed to wear each sensor on the non-dominant hip (ActiGraph GT3X+), wrist (GENEActiv), or upper arm (BodyMedia SenseWear Mini) for 24 h/day and record daily wake and bed times for one week over the course of three consecutive weeks. Women received feedback about their daily physical activity and sleep behaviors. Feasibility (i.e., acceptability and demand) was measured using surveys, interviews, and wear time.
Results
Women felt the GENEActiv (94.7 %) and SenseWear Mini (90.0 %) were easier to wear and preferred the placement (68.4, 80 % respectively) as compared to the ActiGraph (42.9, 47.6 % respectively). Mean wear time on valid days was similar across sensors (ActiGraph: M = 918.8 ± 115.0 min; GENEActiv: M = 949.3 ± 86.6; SenseWear: M = 928.0 ± 101.8) and well above other studies using wake time only protocols. Informational feedback was the biggest motivator, while appearance, comfort, and inconvenience were the biggest barriers to wearing sensors. Wear time was valid on 93.9 % (ActiGraph), 100 % (GENEActiv), and 95.2 % (SenseWear) of eligible days. 61.9, 95.2, and 71.4 % of participants had seven valid days of data for the ActiGraph, GENEActiv, and SenseWear, respectively.
Conclusion
Twenty-four hour monitoring over seven consecutive days is a feasible approach in middle-aged women. Researchers should consider participant acceptability and demand, in addition to validity and reliability, when choosing a wearable sensor. More research is needed across populations and study designs.
ContributorsHuberty, Jennifer (Author) / Ehlers, Diane (Author) / Kurka, Jonathan (Author) / Ainsworth, Barbara (Author) / Buman, Matthew (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-07-30
130367-Thumbnail Image.png
Description
Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS,

Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS, avoids the time consuming steps of de novo whole genome assembly, multiple genome alignment, and annotation.
Results
For simulations SISRS is able to identify large numbers of loci containing variable sites with phylogenetic signal. For genomic data from apes, SISRS identified thousands of variable sites, from which we produced an accurate phylogeny. Finally, we used SISRS to identify phylogenetic markers that we used to estimate the phylogeny of placental mammals. We recovered eight phylogenies that resolved the basal relationships among mammals using datasets with different levels of missing data. The three alternate resolutions of the basal relationships are consistent with the major hypotheses for the relationships among mammals, all of which have been supported previously by different molecular datasets.
Conclusions
SISRS has the potential to transform phylogenetic research. This method eliminates the need for expensive marker development in many studies by using whole genome shotgun sequence data directly. SISRS is open source and freely available at https://github.com/rachelss/SISRS/releases.
ContributorsSchwartz, Rachel (Author) / Harkins, Kelly (Author) / Stone, Anne (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-06-11