Matching Items (355)
Filtering by

Clear all filters

129098-Thumbnail Image.png
Description

Background: HDL carries a rich protein cargo and examining HDL protein composition promises to improve our understanding of its functions. Conventional mass spectrometry methods can be lengthy and difficult to extend to large populations. In addition, without prior enrichment of the sample, the ability of these methods to detect low abundance

Background: HDL carries a rich protein cargo and examining HDL protein composition promises to improve our understanding of its functions. Conventional mass spectrometry methods can be lengthy and difficult to extend to large populations. In addition, without prior enrichment of the sample, the ability of these methods to detect low abundance proteins is limited. Our objective was to develop a high-throughput approach to examine HDL protein composition applicable to diabetes and cardiovascular disease (CVD).

Methods: We optimized two multiplexed assays to examine HDL proteins using a quantitative immunoassay (Multi-Analyte Profiling- MAP) and mass spectrometric-based quantitative proteomics (Multiple Reaction Monitoring-MRM). We screened HDL proteins using human xMAP (90 protein panel) and MRM (56 protein panel). We extended the application of these two methods to HDL isolated from a group of participants with diabetes and prior cardiovascular events and a group of non-diabetic controls.

Results: We were able to quantitate 69 HDL proteins using MAP and 32 proteins using MRM. For several common proteins, the use of MRM and MAP was highly correlated (p < 0.01). Using MAP, several low abundance proteins implicated in atherosclerosis and inflammation were found on HDL. On the other hand, MRM allowed the examination of several HDL proteins not available by MAP.

Conclusions: MAP and MRM offer a sensitive and high-throughput approach to examine changes in HDL proteins in diabetes and CVD. This approach can be used to measure the presented HDL proteins in large clinical studies.

ContributorsYassine, Hussein N. (Author) / Jackson, Angela M. (Author) / Borges, Chad (Author) / Billheimer, Dean (Author) / Koh, Hyunwook (Author) / Smith, Derek (Author) / Reaven, Peter (Author) / Lau, Serrine S. (Author) / Borchers, Christoph H. (Author) / Biodesign Institute (Contributor)
Created2014-01-08
129141-Thumbnail Image.png
Description

Traditionally, hazardous chemicals have been regulated in the U.S. on a one-by-one basis, an approach that is slow, expensive and can be inefficient, as illustrated by a decades-long succession of replacing one type of organohalogen flame retardants (OHFRs) with another one, without addressing the root cause of toxicity and associated

Traditionally, hazardous chemicals have been regulated in the U.S. on a one-by-one basis, an approach that is slow, expensive and can be inefficient, as illustrated by a decades-long succession of replacing one type of organohalogen flame retardants (OHFRs) with another one, without addressing the root cause of toxicity and associated public health threats posed. The present article expounds on the need for efficient monitoring strategies and pragmatic steps in reducing environmental pollution and adverse human health impacts. A promising approach is to combine specific bioassays with state-of-the-art chemical screening to identify chemicals and chemical mixtures sharing specific modes of action (MOAs) and pathways of toxicity (PoTs). This approach could be used to identify and regulate hazardous chemicals as classes or compound families, featuring similar biological end-points, such as endocrine disruption and mutagenicity. Opportunities and potential obstacles of implementing this approach are discussed.

ContributorsVenkatesan, Arjunkrishna (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-08-28
129320-Thumbnail Image.png
Description

Researchers have iterated that the future of synthetic biology and biotechnology lies in novel consumer applications of crossing biology with engineering. However, if the new biology's future is to be sustainable, early and serious efforts must be made towards social sustainability. Therefore, the crux of new applications of synthetic biology

Researchers have iterated that the future of synthetic biology and biotechnology lies in novel consumer applications of crossing biology with engineering. However, if the new biology's future is to be sustainable, early and serious efforts must be made towards social sustainability. Therefore, the crux of new applications of synthetic biology and biotechnology is public understanding and acceptance. The RASVaccine is a novel recombinant design not found in nature that re-engineers a common bacteria ( Salmonella) to produce a strong immune response in humans. Synthesis of the RASVaccine has the potential to improve public health as an inexpensive, non-injectable product. But how can scientists move forward to create a dialogue of creating a 'common sense' of this new technology in order to promote social sustainability? This paper delves into public issues raised around these novel technologies and uses the RASVaccine as an example of meeting the public with a common sense of its possibilities and limitations.

ContributorsDankel, Dorothy J. (Author) / Roland, Kenneth (Author) / Fisher, Michael (Author) / Brenneman, Karen (Author) / Delgado, Ana (Author) / Santander, Javier (Author) / Baek, Chang-Ho (Author) / Clark-Curtiss, Josephine (Author) / Strand, Roger (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014-08-01
Description

Rho GTPases are frequent targets of virulence factors as they are keystone signaling molecules. Herein, we demonstrate that AMPylation of Rho GTPases by VopS is a multifaceted virulence mechanism that counters several host immunity strategies. Activation of NFκB, Erk, and JNK kinase signaling pathways were inhibited in a VopS-dependent manner

Rho GTPases are frequent targets of virulence factors as they are keystone signaling molecules. Herein, we demonstrate that AMPylation of Rho GTPases by VopS is a multifaceted virulence mechanism that counters several host immunity strategies. Activation of NFκB, Erk, and JNK kinase signaling pathways were inhibited in a VopS-dependent manner during infection with Vibrio parahaemolyticus. Phosphorylation and degradation of IKBα were inhibited in the presence of VopS as was nuclear translocation of the NFκB subunit p65. AMPylation also prevented the generation of superoxide by the phagocytic NADPH oxidase complex, potentially by inhibiting the interaction of Rac and p67. Furthermore, the interaction of GTPases with the E3 ubiquitin ligases cIAP1 and XIAP was hindered, leading to decreased degradation of Rac and RhoA during infection. Finally, we screened for novel Rac1 interactions using a nucleic acid programmable protein array and discovered that Rac1 binds to the protein C1QA, a protein known to promote immune signaling in the cytosol. Interestingly, this interaction was disrupted by AMPylation. We conclude that AMPylation of Rho Family GTPases by VopS results in diverse inhibitory consequences during infection beyond the most obvious phenotype, the collapse of the actin cytoskeleton.

ContributorsWoolery, Andrew R. (Author) / Yu, Xiaobo (Author) / LaBaer, Joshua (Author) / Orth, Kim (Author) / Biodesign Institute (Contributor)
Created2014-11-21
129052-Thumbnail Image.png
Description

Background: Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants

Background: Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants do not have the enzyme machinery to perform this process, thus restricting their use as bioreactors for production of recombinant therapeutic proteins.

Results: The present study demonstrates that an isoform of the human GalNAc-Ts family, GalNAc-T2, retains its localization and functionality upon expression in N. benthamiana L. plants. The recombinant enzyme resides in the Golgi as evidenced by the fluorescence distribution pattern of the GalNAc-T2:GFP fusion and alteration of the fluorescence signature upon treatment with Brefeldin A. A GalNAc-T2-specific acceptor peptide, the 113-136 aa fragment of chorionic gonadotropin β-subunit, is glycosylated in vitro by the plant-produced enzyme at the "native" GalNAc attachment sites, Ser-121 and Ser-127. Ectopic expression of GalNAc-T2 is sufficient to "arm" tobacco cells with the ability to perform GalNAc-glycosylation, as evidenced by the attachment of GalNAc to Thr-119 of the endogenous enzyme endochitinase. However, glycosylation of highly expressed recombinant glycoproteins, like magnICON-expressed E. coli enterotoxin B subunit:H. sapiens mucin 1 tandem repeat-derived peptide fusion protein (LTBMUC1), is limited by the low endogenous UDP-GalNAc substrate pool and the insufficient translocation of UDP-GalNAc to the Golgi lumen. Further genetic engineering of the GalNAc-T2 plants by co-expressing Y. enterocolitica UDP-GlcNAc 4-epimerase gene and C. elegans UDP-GlcNAc/UDP-GalNAc transporter gene overcomes these limitations as indicated by the expression of the model LTBMUC1 protein exclusively as a glycoform.

Conclusion: Plant bioreactors can be engineered that are capable of producing Tn antigen-containing recombinant therapeutics.

ContributorsDaskalova, Sasha (Author) / Radder, Josiah (Author) / Cichacz, Zbigniew (Author) / Sam, Olsen (Author) / Tsaprailis, George (Author) / Mason, Hugh (Contributor) / Lopez, Linda (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2010-08-24
Description

Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a “sink” for recalcitrant,

Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a “sink” for recalcitrant, hydrophobic, and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the US Environmental Protection Agency’s definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize future opportunities and invite collaborative use of the NSSR by the research community. The H2O at ASU represents a new resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants, (ii) provide spatial and temporal trends of contaminants, (iii) inform and evaluate the effectiveness of environmental policy-making and regulations, and (iv) approximate, ongoing exposures and body burdens of mass-produced chemicals in human society.

ContributorsVenkatesan, Arjunkrishna (Author) / Done, Hansa (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-02-01
126596-Thumbnail Image.png
Description

Society is heavily dependent on a reliable electric supply; all infrastructure systems depend on electricity to operate. When the electric system fails, the impacts can be catastrophic (food spoilage, inoperable medical devices, lack of access to water, etc.). The social impacts, defined as the direct and indirect impacts on people,

Society is heavily dependent on a reliable electric supply; all infrastructure systems depend on electricity to operate. When the electric system fails, the impacts can be catastrophic (food spoilage, inoperable medical devices, lack of access to water, etc.). The social impacts, defined as the direct and indirect impacts on people, of power outages must be explored as the likelihood of power outages and blackouts are increasing. However, compared to other hazards, such as heat and flooding, the knowledge base on the impacts of power outages is relatively small. The purpose of this thesis is to identify what is currently known about the social impacts of power outages, identify where gaps in the literature exist, and deploy a survey to explore power outage experiences at the household level. This thesis is comprised of two chapters, a systematic literature review on the current knowledge of the social impacts of power outages and a multi-city survey focused on power outage experiences.

The first chapter comprised of a systematic literature review using a combined search of in Scopus which returned 762 candidate articles were identified that potentially explored the social impacts of power outages. However, after multiple filtering criteria were applied, only 45 articles met all criteria. Four themes were used to classify the literature, not exclusively, including modeling, social, technical, and other. Only papers that were classified as “social” - meaning they observed how people were affected by a power outage - or in combination with other categories were used within the review.

From the literature, populations of concern were identified, including minority demographics - specifically Blacks or African Americans, children, elderly, and rural populations. The most commonly reported health concerns were from those that rely on medical devices for chronic conditions and unsafe generator practices. Criminal activity was also reported to increase during prolonged power outages and can be mitigated by consistent messaging on where to receive assistance and when power will be restored. Providing financial assistance and resources such as food and water can reduce the crime rate temporarily, but the crime rate can be expected to increase once the relief expires. Authorities should expect looting to occur, especially in poorer areas, during prolonged power outages. Gaps in the literature were identified and future directions for research were provided.

The second chapter consists of a multi-city survey that targeted three major cities across the United States (Detroit, MI; Miami, FL; and Phoenix, AZ). The survey was disseminated through Amazon’s Mechanical Turk and hosted by Qualtrics. 896 participants from the three cities qualified to complete the full version of the survey. Three criteria had to be met for participants to complete the full survey including residing in one of the three target cities, living at their primary address for a majority of the year, and indicate they had experienced a power outage within the last five years.

Participants were asked questions regarding the number of outages experienced in the last five years, the length of their most recent and longest outage experienced, if they owned a generator, how they managed their longest power outage, if participants or anyone in their household relies on a medical device, the financial burden their power outage caused, and standard demographic- and income-related questions. Race was a significant variable that influenced the outage duration length but not frequency in Phoenix and Detroit. Income was not a significant variable associated with experiencing greater economic impacts, such as having thrown food away because of an outage and not receiving help during the longest outage. Additional assessments similar to this survey are needed to better understand household power outage experiences.

Findings from this thesis demonstrate traditional metrics used in vulnerability indices were not indicative of who experienced the greatest effects of power outages. Additionally, other factors that are not included in these indices, such as owning adaptive resources including medical devices and generators in Phoenix and Detroit, are factors in reducing negative outcomes. More research is needed on this topic to indicate which populations are more likely to experience factors that can influence positive or negative outage outcomes.

ContributorsAndresen, Adam (Author) / Hondula, David M. (Contributor, Contributor) / Gall, Melanie (Contributor) / Meerow, Sara (Contributor)
Created2020-07-20
103-Thumbnail Image.png
Description

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) cooled space across cities. Furthermore, the deployment of government-sponsored cooling

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) cooled space across cities. Furthermore, the deployment of government-sponsored cooling centers is not based on the location of existing cooling resources (residential air conditioning and air conditioned public space), raising questions of the equitability of access to heat refuges.

Using Los Angeles County, California and Maricopa County, Arizona (whose county seat is Phoenix) we explore the distribution of private and public cooling resources and access inequities at the household level. We do this by evaluating the presence of in-home air conditioning and developing a walking-based accessibility measure to air conditioned public space using a combined cumulative opportunities-gravity approach. We find significant inequities in the distribution of residential air conditioning across both regions which are largely attributable to building age and inter/intra-regional climate differences. There are also regional disparities in walkable access to public cooled space.

At average walking speeds, we find that official cooling centers are only accessible to a small fraction of households (3% in Los Angeles, 2% in Maricopa) while a significantly higher number of households (80% in Los Angeles, 39% in Maricopa) have access to at least one other type of public cooling resource which includes libraries and commercial establishments. Aggregated to a neighborhood level, we find that there are areas within each region where access to cooled space (either public or private) is limited which may increase the health risks associated with heat.

Created2016
128214-Thumbnail Image.png
Description

The rise of antibiotic resistance has emphasized the shortcomings in antibiotic drug development (Boucher et al., 2013). The move from biological based discovery methods to chemical approaches to identify candidates has left the antibiotic pipeline painfully dry (Lewis, 2013). The paucity of compounds that are effective against antibiotic resistant pathogens

The rise of antibiotic resistance has emphasized the shortcomings in antibiotic drug development (Boucher et al., 2013). The move from biological based discovery methods to chemical approaches to identify candidates has left the antibiotic pipeline painfully dry (Lewis, 2013). The paucity of compounds that are effective against antibiotic resistant pathogens has led to great interest in antimicrobial peptides (AMPs) as potential solutions to the rise of resistant organisms (Hancock and Sahl, 2006; Fox, 2013). AMPs are short (5–50 amino acid) peptides that are produced by virtually all organisms as part of an innate immune system. There are 2,398 AMPs that have been reported (Antimicrobial Peptide Database—September 2013) and over 80% are cationic AMPs (CAMPs). Most positively charged AMPs interact with anionic bacterial membranes (Schmidtchen and Malmsten, 2013) which leads to a rapid breakdown in membrane function and subsequent cell death (Wimley, 2010). It is this mechanism of action that is of interest as it should be difficult for bacteria to develop resistance against lethal concentrations of CAMPs.

ContributorsDiehnelt, Chris (Author) / Biodesign Institute (Contributor)
Created2013-12-25
128221-Thumbnail Image.png
Description

Human herpesvirus 8 (HHV8) infection leads to potent activation of nuclear factor kappa B (NFκB) in primary and transformed cells. We used recombinant HHV8 (rKSHV.219) expressing green fluorescent protein under the constitutive cellular promoter elongation factor 2α and red fluorescent protein under an early HHV8 lytic gene promoter T1.1 to

Human herpesvirus 8 (HHV8) infection leads to potent activation of nuclear factor kappa B (NFκB) in primary and transformed cells. We used recombinant HHV8 (rKSHV.219) expressing green fluorescent protein under the constitutive cellular promoter elongation factor 2α and red fluorescent protein under an early HHV8 lytic gene promoter T1.1 to monitor replication during infection of human foreskin fibroblasts (HF), noting changes in NFκB activity. In primary HF, NFκB levels do not affect the ability of HHV8 to establish infection or maintain latency. Furthermore, there was no effect on the percent of cells undergoing reactivation from latency, and there were similar numbers of released and cell-associated HHV8 viral particles following reactivation in the presence of inhibitors. Reactivation of HHV8 in latently infected HF in the presence of NFκB inhibitors resulted in production of viral particles that did not efficiently establish infection, due to deficiencies in binding and/or entry into normally permissive cells. Exogenous expression of glycoprotein M, an envelope protein involved in viral binding and entry, was able to partially overcome the deficiency induced by NFκB inhibitors. Our data indicate that in primary cells, NFκB is not required for infection, establishment of latency, or entry into the lytic cycle, but is required for the expression of virion associated genes involved in the initial steps of virion infectivity. These studies suggest that strategies to inhibit NFκB may prevent HHV8 spread and should be considered as a potential therapeutic target for preventing HHV8 associated diseases.

Created2014-04-04