Matching Items (355)
Filtering by

Clear all filters

128508-Thumbnail Image.png
Description

Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have

Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells.

ContributorsGlenn, Honor (Author) / Messner, Jacob (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2016-08-18
129459-Thumbnail Image.png
Description

Background: The cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity

Background: The cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity regarding its relationship to diverse pathologies.

Results: In this work, we have developed and validated a fully quantitative MSIA assay for MIF, and used it in the discovery and quantification of different proteoforms of MIF in serum samples, including cysteinylated and glycated MIF. The MSIA assay had a linear range of 1.56-50 ng/mL, and exhibited good precision, linearity, and recovery characteristics. The new assay was applied to a small cohort of human serum samples, and benchmarked against an MIF ELISA assay.

Conclusions: The quantitative MIF MSIA assay provides a sensitive, precise and high throughput method to delineate and quantify MIF proteoforms in biological samples.

ContributorsSherma, Nisha (Author) / Borges, Chad (Author) / Trenchevska, Olgica (Author) / Jarvis, Jason W. (Author) / Rehder, Douglas (Author) / Oran, Paul (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2014-10-14
Description

We present a microarray nonlinear calibration (MiNC) method for quantifying antibody binding to the surface of protein microarrays that significantly increases the linear dynamic range and reduces assay variation compared with traditional approaches. A serological analysis of guinea pig Mycobacterium tuberculosis models showed that a larger number of putative antigen

We present a microarray nonlinear calibration (MiNC) method for quantifying antibody binding to the surface of protein microarrays that significantly increases the linear dynamic range and reduces assay variation compared with traditional approaches. A serological analysis of guinea pig Mycobacterium tuberculosis models showed that a larger number of putative antigen targets were identified with MiNC, which is consistent with the improved assay performance of protein microarrays. MiNC has the potential to be employed in biomedical research using multiplex antibody assays that need quantitation, including the discovery of antibody biomarkers, clinical diagnostics with multi-antibody signatures, and construction of immune mathematical models.

ContributorsYu, Xiaobo (Author) / Wallstrom, Garrick (Author) / Magee, Mitch (Author) / Qiu, Ji (Author) / Mendoza, D. Eliseo A. (Author) / Wang, Jie (Author) / Bian, Xiaofang (Author) / Graves, Morgan (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2013-08-12
Description

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1–RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.

ContributorsDriscoll, Brent (Author) / Lunceford, Chad (Author) / Lin, Su (Author) / Woronowicz, K. (Author) / Niederman, R. A. (Author) / Woodbury, Neal (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-28
128746-Thumbnail Image.png
Description

Post-exposure vaccination with vaccinia virus (VACV) has been suggested to be effective in minimizing death if administered within four days of smallpox exposure. While there is anecdotal evidence for efficacy of post-exposure vaccination this has not been definitively studied in humans. In this study, we analyzed post-exposure prophylaxis using several

Post-exposure vaccination with vaccinia virus (VACV) has been suggested to be effective in minimizing death if administered within four days of smallpox exposure. While there is anecdotal evidence for efficacy of post-exposure vaccination this has not been definitively studied in humans. In this study, we analyzed post-exposure prophylaxis using several attenuated recombinant VACV in a mouse model. A recombinant VACV expressing murine interferon gamma (IFN-γ) was most effective for post-exposure protection of mice infected with VACV and ectromelia virus (ECTV). Untreated animals infected with VACV exhibited severe weight loss and morbidity leading to 100% mortality by 8 to 10 days post-infection. Animals treated one day post-infection had milder symptoms, decreased weight loss and morbidity, and 100% survival. Treatment on days 2 or 3 post-infection resulted in 40% and 20% survival, respectively. Similar results were seen in ECTV-infected mice. Despite the differences in survival rates in the VACV model, the viral load was similar in both treated and untreated mice while treated mice displayed a high level of IFN-γ in the serum. These results suggest that protection provided by IFN-γ expressed by VACV may be mediated by its immunoregulatory activities rather than its antiviral effects. These results highlight the importance of IFN-γ as a modulator of the immune response for post-exposure prophylaxis and could be used potentially as another post-exposure prophylaxis tool to prevent morbidity following infection with smallpox and other orthopoxviruses.

ContributorsHolechek, Susan (Author) / Denzler, Karen (Author) / Heck, Michael (Author) / Schriewer, Jill (Author) / Buller, R. Mark (Author) / Legrand, Fatema A. (Author) / Verardi, Paulo H. (Author) / Jones, Leslie A. (Author) / Yilma, Tilahun (Author) / Jacobs, Bertram (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2013-10-17
128747-Thumbnail Image.png
Description

Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific

Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

ContributorsGeorges, Joseph F. (Author) / Liu, Xiaowei (Author) / Eschbacher, Jennifer (Author) / Nichols, Joshua (Author) / Mooney, Michael A. (Author) / Joy, Anna (Author) / Spetzler, Robert F. (Author) / Feuerstein, Burt G. (Author) / Preul, Mark C. (Author) / Anderson, Trent (Author) / Yan, Hao (Author) / Nakaji, Peter (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-04-15
128754-Thumbnail Image.png
Description

The rise in antibiotic resistance has led to an increased research focus on discovery of new antibacterial candidates. While broad-spectrum antibiotics are widely pursued, there is evidence that resistance arises in part from the wide spread use of these antibiotics. Our group has developed a system to produce protein affinity

The rise in antibiotic resistance has led to an increased research focus on discovery of new antibacterial candidates. While broad-spectrum antibiotics are widely pursued, there is evidence that resistance arises in part from the wide spread use of these antibiotics. Our group has developed a system to produce protein affinity agents, called synbodies, which have high affinity and specificity for their target. In this report, we describe the adaptation of this system to produce new antibacterial candidates towards a target bacterium. The system functions by screening target bacteria against an array of 10,000 random sequence peptides and, using a combination of membrane labeling and intracellular dyes, we identified peptides with target specific binding or killing functions. Binding and lytic peptides were identified in this manner and in vitro tests confirmed the activity of the lead peptides. A peptide with antibacterial activity was linked to a peptide specifically binding Staphylococcus aureus to create a synbody with increased antibacterial activity. Subsequent tests showed that this peptide could block S. aureus induced killing of HEK293 cells in a co-culture experiment. These results demonstrate the feasibility of using the synbody system to discover new antibacterial candidate agents.

ContributorsDomenyuk, Valeriy (Author) / Loskutov, Andrey (Author) / Johnston, Stephen (Author) / Diehnelt, Chris (Author) / Biodesign Institute (Contributor)
Created2013-01-23
129043-Thumbnail Image.png
Description

Background: The evolutionary diversification of gene families through gene creation (and loss) is a dynamic process believed to be critical to the evolution of functional novelty. Previous identification of a closely related family of eight annotated metalloprotease genes of the M17 Merops family in the Drosophila sperm proteome (termed, S perm-L

Background: The evolutionary diversification of gene families through gene creation (and loss) is a dynamic process believed to be critical to the evolution of functional novelty. Previous identification of a closely related family of eight annotated metalloprotease genes of the M17 Merops family in the Drosophila sperm proteome (termed, S perm-L eucylA minoP eptidases, S-LAPs 1-8) led us to hypothesize that this gene family may have experienced such a diversification during insect evolution.

Results: To assess putative functional activities of S-LAPs, we (i) demonstrated that all S-LAPs are specifically expressed in the testis, (ii) confirmed their presence in sperm by two-dimensional gel electrophoresis and mass spectrometry, (iii) determined that they represent a major portion of the total protein in sperm and (iv) identified aminopeptidase enzymatic activity in sperm extracts using LAP-specific substrates. Functionally significant divergence at the canonical M17 active site indicates that the largest phylogenetic group of S-LAPs lost catalytic activity and likely acquired novel, as yet undetermined, functions in sperm prior to the expansion of the gene family.

Conclusions: Comparative genomic and phylogenetic analyses revealed the dramatic expansion of the S-LAP gene family during Drosophila evolution and copy number heterogeneity in the genomes of related insects. This finding, in conjunction with the loss of catalytic activity and potential neofunctionalization amongst some family members, extends empirical support for pervasive "revolving door" turnover in the evolution of reproductive gene family composition and function.

Created2011-04-05
129050-Thumbnail Image.png
Description

Background: Over the last decade, next generation sequencing (NGS) has become widely available, and is now the sequencing technology of choice for most researchers. Nonetheless, NGS presents a challenge for the evolutionary biologists who wish to estimate evolutionary genetic parameters from a mixed sample of unlabeled or untagged individuals, especially when

Background: Over the last decade, next generation sequencing (NGS) has become widely available, and is now the sequencing technology of choice for most researchers. Nonetheless, NGS presents a challenge for the evolutionary biologists who wish to estimate evolutionary genetic parameters from a mixed sample of unlabeled or untagged individuals, especially when the reconstruction of full length haplotypes can be unreliable. We propose two novel approaches, least squares estimation (LS) and Approximate Bayesian Computation Markov chain Monte Carlo estimation (ABC-MCMC), to infer evolutionary genetic parameters from a collection of short-read sequences obtained from a mixed sample of anonymous DNA using the frequencies of nucleotides at each site only without reconstructing the full-length alignment nor the phylogeny.

Results: We used simulations to evaluate the performance of these algorithms, and our results demonstrate that LS performs poorly because bootstrap 95 % Confidence Intervals (CIs) tend to under- or over-estimate the true values of the parameters. In contrast, ABC-MCMC 95 % Highest Posterior Density (HPD) intervals recovered from ABC-MCMC enclosed the true parameter values with a rate approximately equivalent to that obtained using BEAST, a program that implements a Bayesian MCMC estimation of evolutionary parameters using full-length sequences. Because there is a loss of information with the use of sitewise nucleotide frequencies alone, the ABC-MCMC 95 % HPDs are larger than those obtained by BEAST.

Conclusion: We propose two novel algorithms to estimate evolutionary genetic parameters based on the proportion of each nucleotide. The LS method cannot be recommended as a standalone method for evolutionary parameter estimation. On the other hand, parameters recovered by ABC-MCMC are comparable to those obtained using BEAST, but with larger 95 % HPDs. One major advantage of ABC-MCMC is that computational time scales linearly with the number of short-read sequences, and is independent of the number of full-length sequences in the original data. This allows us to perform the analysis on NGS datasets with large numbers of short read fragments. The source code for ABC-MCMC is available at https://github.com/stevenhwu/SF-ABC.

ContributorsWu, Steven (Author) / Rodrigo, Allen G. (Author) / Biodesign Institute (Contributor)
Created2015-11-04
129096-Thumbnail Image.png
Description

Background: Cystatin C (CysC) is an endogenous cysteine protease inhibitor that can be used to assess the progression of kidney function. Recent studies demonstrate that CysC is a more specific indicator of glomerular filtration rate (GFR) than creatinine. CysC in plasma exists in multiple proteoforms. The goal of this study was

Background: Cystatin C (CysC) is an endogenous cysteine protease inhibitor that can be used to assess the progression of kidney function. Recent studies demonstrate that CysC is a more specific indicator of glomerular filtration rate (GFR) than creatinine. CysC in plasma exists in multiple proteoforms. The goal of this study was to clarify the association of native CysC, CysC missing N-terminal Serine (CysC des-S), and CysC without three N-terminal residues (CysC des-SSP) with diabetic chronic kidney disease (CKD).

Results: Using mass spectrometric immunoassay, the plasma concentrations of native CysC and the two CysC truncation proteoforms were examined in 111 individuals from three groups: 33 non-diabetic controls, 34 participants with type 2 diabetes (DM) and without CKD and 44 participants with diabetic CKD. Native CysC concentrations were 1.4 fold greater in CKD compared to DM group (p = 0.02) and 1.5 fold greater in CKD compared to the control group (p = 0.001). CysC des-S concentrations were 1.55 fold greater in CKD compared to the DM group (p = 0.002) and 1.9 fold greater in CKD compared to the control group (p = 0.0002). CysC des-SSP concentrations were 1.8 fold greater in CKD compared to the DM group (p = 0.008) and 1.52 fold greater in CKD compared to the control group (p = 0.002). In addition, the concentrations of CysC proteoforms were greater in the setting of albuminuria. The truncated CysC proteoform concentrations were associated with estimated GFR independent of native CysC concentrations.

Conclusion: Our findings demonstrate a greater amount of CysC proteoforms in diabetic CKD. We therefore suggest assessing the role of cystatin C proteoforms in the progression of CKD.

ContributorsYassine, Hussein N. (Author) / Trenchevska, Olgica (Author) / Dong, Zhiwei (Author) / Bashawri, Yara (Author) / Koska, Juraj (Author) / Reaven, Peter D. (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2016-03-25