Matching Items (259)
130424-Thumbnail Image.png
Description
Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively.

Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.
ContributorsPan, Shihui (Author) / Yan, Ning (Author) / Liu, Xinyue (Author) / Wang, Wenbing (Author) / Zhang, Yongming (Author) / Liu, Rui (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2014-11-01
Description
Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin

Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, formation of heterochromatin at telomeres and the homothallic silent mating type loci require the Sir3 protein. Here, we use a combination of sedimentation velocity, atomic force microscopy and nucleosomal array capture to characterize the stoichiometry and conformation of Sir3 nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome. We also find that Sir3 fibres are less compact than canonical magnesium-induced 30 nm fibres. We suggest that heterochromatin proteins promote silencing by ‘coating’ nucleosomal arrays, stabilizing interactions between nucleosomal histones and DNA.
ContributorsSwygert, Sarah G. (Author) / Manning, Benjamin J. (Author) / Senapati, Subhadip (Author) / Kaur, Parminder (Author) / Lindsay, Stuart (Author) / Demeler, Borries (Author) / Peterson, Craig L. (Author) / Biodesign Institute (Contributor) / Single Molecule Biophysics (Contributor)
Created2014-08-01
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
Description

The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while

The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while effluent COD and N are not changed much by hybrid operation, the hybrid system gives increased methane production in the AD and decreased sludge wasting, both caused mainly by a negative actual solids retention time in the hybrid AD. Increased retention of biomass and EPS allows for more hydrolysis and conversion to methane in the hybrid AD. However, fermenters and methanogens survive in the AS, allowing significant methane production in the settler and thickener of both systems, and AD sludge recycle makes methane formation greater in the hybrid system.

ContributorsYoung, Michelle (Author) / Marcus, Andrew (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2013-08-13
130362-Thumbnail Image.png
Description
Background
Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that

Background
Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions.
Results
We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/.
Conclusions
Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods.
ContributorsZhang, Wenlu (Author) / Feng, Daming (Author) / Li, Rongjian (Author) / Chernikov, Andrey (Author) / Chrisochoides, Nikos (Author) / Osgood, Christopher (Author) / Konikoff, Charlotte (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ji, Shuiwang (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2013-12-28
130363-Thumbnail Image.png
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis,

Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
ContributorsYuan, Lei (Author) / Woodard, Alexander (Author) / Ji, Shuiwang (Author) / Jiang, Yuan (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / Ira A. Fulton Schools of Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2012-05-23
134334-Thumbnail Image.png
Description
Coronaviruses are a significant group of viruses that cause enteric and respiratory infections in a variety of animals, including humans. Outbreaks of Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS) in the past 15 years has increased research into coronaviruses to gain an understanding of their structure

Coronaviruses are a significant group of viruses that cause enteric and respiratory infections in a variety of animals, including humans. Outbreaks of Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS) in the past 15 years has increased research into coronaviruses to gain an understanding of their structure and function so one day therapies and vaccines may be produced. These viruses have four main structural proteins: the spike, nucleocapsid, envelope, and membrane proteins. The envelope (E) protein is an integral membrane protein in the viral envelope that acts as a viroporin for transport of cations and plays an important role in pathogenesis and viral assembly. E contains a hydrophobic transmembrane domain with polar residues that is conserved across coronavirus species and may be significant to its function. This experiment looks at the possible role of one polar residue in assembly, the 15th residue glutamine, in the Mouse Hepatitis Virus (MHV) E protein. The glutamine 15 residue was mutated into positively charged residues lysine or arginine. Plasmids with these mutations were co-expressed with the membrane protein (M) gene to produce virus-like particles (VLPs). VLPs are produced when E and M are co-expressed together and model assembly of the coronavirus envelope, but they are not infectious as they do not contain the viral genome. Observing their production with the mutated E protein gives insight into the role the glutamine residue plays in assembly. The experiment showed that a changing glutamine 15 to positive charges does not appear to significantly affect the assembly of the VLPs, indicating that this specific residue may not have a large impact on viral assembly.
ContributorsHaller, Sarah S. (Author) / Hogue, Brenda (Thesis director) / Liu, Wei (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor) / Biodesign Institute (Contributor)
Created2017-05
Description
This thesis project explores the extent to which elected education officials, specifically school board members, with a background in education make policy decisions differently than those who do not have a background in education. This line of questioning began with a project completed in a class I took in the

This thesis project explores the extent to which elected education officials, specifically school board members, with a background in education make policy decisions differently than those who do not have a background in education. This line of questioning began with a project completed in a class I took in the fall semester of 2023 - Innovations in School Democracy, where students chose a critical issue in the education sphere and situated it within the context of civic education. The critical issue I addressed at the time was the significant number of individuals in “high-ranking” positions in the education field who do not appear to have a background in anything education-related, outside of their own schooling. The issue lies with the fact that these individuals are making large scale policy decisions that impact all students, teachers, parents, and school faculty members within their district without having any research or practice-based educational foundation or experience to draw upon for their decision making. For the purpose of this thesis, I expanded this phenomenon beyond the realm of civic education by performing a comparative analysis of elected education official decision-making between school boards that have members with educational backgrounds and those who don’t, in addition to analyzing the stances and policies of the Superintendent of Public Instruction. The goal of this analysis is to see how, or if, decisions differ and to what extent those decisions appear to be driven by current political ideologies versus educational research and best practices. I hypothesize that elected education officials who have a background in education will make decisions that are more student- and educator-focused and have fewer indicators of a specific partisan political ideology. Conversely, I hypothesize the opposite for decision-making by officials without an education background, where I expect to find more evidence of influential partisan political ideology. In order to determine if a decision-making gap exists, I examined school board websites and pulled district-related news articles in order to cross-analyze the verbiage on specific political buzzwords or phrases that could be clearly linked to a political party’s ideology or stance on public schooling matters and policies. I performed a similar search through the campaign platform and current Arizona Education System biographical page for Superintendent Tom Horne. To begin this investigation, thirty school districts in the state of Arizona were selected for preliminary research - ten small districts, ten medium-size districts, and ten large districts. Through the use of school district websites and the biographies of school board members, I determined which school boards had individuals with a background in education and which did not. From there, two school boards from each district size category were selected for examination - one board categorized as having a strong educational background presence and one board that either had very minimal presence, or none at all. From this research, I intended to present preliminary findings about the extent to which differences in policy-making decisions relate to school board member education background and experience, as well as the degree to which explicit partisan politicization appears to influence such decisions. Upon completion of this limited research, my findings ended up deriving more directly from the mission and vision statements of school districts and school boards, though policy decisions were still loosely analyzed through district media articles. However, my research on Superintendent Horne lent itself well to answer all three of my proposed research questions.
ContributorsGraves, Olivia (Author) / Hermanns, Carl (Thesis director) / Schugurensky, Daniel (Committee member) / Bartlett, Tara (Committee member) / Barrett, The Honors College (Contributor) / School of Social Transformation (Contributor) / Department of Psychology (Contributor)
Created2024-05
129567-Thumbnail Image.png
Description

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

ContributorsTrenchevska, Olgica (Author) / Phillips, David A. (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2014-06-23
129571-Thumbnail Image.png
Description

This work suggests an effective approach to fabricate reduced graphene oxide-based carbon (RGO/C) composite films. The carbonization of graphene oxide-reinforced polyimide (GO/PI) composite films was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The crystalline structures and carbonized mechanism of the RGO/C composite films were investigated in detail

This work suggests an effective approach to fabricate reduced graphene oxide-based carbon (RGO/C) composite films. The carbonization of graphene oxide-reinforced polyimide (GO/PI) composite films was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The crystalline structures and carbonized mechanism of the RGO/C composite films were investigated in detail by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the carbonization yields were improved due to the catalytic effects of RGO. These RGO/C composite films exhibited obvious structural orientations by SEM investigation of their cross sections.

ContributorsNiu, Yongan (Author) / Zhang, Xin (Author) / Zhao, Jiupeng (Author) / Tian, Yanqing (Author) / Yan, Xiangqiao (Author) / Li, Yao (Author) / Biodesign Institute (Contributor)
Created2014-04-11