Matching Items (347)
Filtering by

Clear all filters

Description

The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral,

The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.

ContributorsSmith, Jeremy D. (Author) / Ferris, Abbie E. (Author) / Heise, Gary D. (Author) / Hinrichs, Richard (Author) / Martin, Philip E. (Author) / College of Health Solutions (Contributor)
Created2014-05-01
129255-Thumbnail Image.png
Description

Nanoscale zero-valent iron (nZVI) is a strong nonspecific reducing agent that is used for in situ degradation of chlorinated solvents and other oxidized pollutants. However, there are significant concerns regarding the risks posed by the deliberate release of engineered nanomaterials into the environment, which have triggered moratoria, for example, in

Nanoscale zero-valent iron (nZVI) is a strong nonspecific reducing agent that is used for in situ degradation of chlorinated solvents and other oxidized pollutants. However, there are significant concerns regarding the risks posed by the deliberate release of engineered nanomaterials into the environment, which have triggered moratoria, for example, in the United Kingdom. This critical review focuses on the effect of nZVI injection on subsurface microbial communities, which are of interest due to their important role in contaminant attenuation processes. Corrosion of ZVI stimulates dehalorespiring bacteria, due to the production of H2 that can serve as an electron donor for reduction of chlorinated contaminants. Conversely, laboratory studies show that nZVI can be inhibitory to pure bacterial cultures, although toxicity is reduced when nZVI is coated with polyelectrolytes or natural organic matter. The emerging toolkit of molecular biological analyses should enable a more sophisticated assessment of combined nZVI/biostimulation or bioaugmentation approaches. While further research on the consequences of its application for subsurface microbial communities is needed, nZVI continues to hold promise as an innovative technology for in situ remediation of pollutants It is particularly attractive. for the remediation of subsurface environments containing chlorinated ethenes because of its ability to potentially elicit and sustain both physical–chemical and biological removal despite its documented antimicrobial properties.

ContributorsBruton, Thomas (Author) / Pycke, Benny (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-06-03
129263-Thumbnail Image.png
Description

Background: To be effective, orally administered live Salmonella vaccines must first survive their encounter with the low pH environment of the stomach. To enhance survival, an antacid is often given to neutralize the acidic environment of the stomach just prior to or concomitant with administration of the vaccine. One drawback of

Background: To be effective, orally administered live Salmonella vaccines must first survive their encounter with the low pH environment of the stomach. To enhance survival, an antacid is often given to neutralize the acidic environment of the stomach just prior to or concomitant with administration of the vaccine. One drawback of this approach, from the perspective of the clinical trial volunteer, is that the taste of a bicarbonate-based acid neutralization system can be unpleasant. Thus, we explored an alternative method that would be at least as effective as bicarbonate and with a potentially more acceptable taste. Because ingestion of protein can rapidly buffer stomach pH, we examined the possibility that the protein-rich Ensure® Nutrition shakes would be effective alternatives to bicarbonate.

Results: We tested one Salmonella enterica serovar Typhimurium and three Salmonella Typhi vaccine strains and found that all strains survived equally well when incubated in either Ensure® or bicarbonate. In a low gastric pH mouse model, Ensure® worked as well or better than bicarbonate to enhance survival through the intestinal tract, although neither agent enhanced the survival of the S. Typhi test strain possessing a rpoS mutation.

Conclusions: Our data show that a protein-rich drink such as Ensure® Nutrition shakes can serve as an alternative to bicarbonate for reducing gastric pH prior to administration of a live Salmonella vaccine.

ContributorsBrenneman, Karen (Author) / Gonzales, Amanda (Author) / Roland, Kenneth (Author) / Curtiss, Roy (Author) / Biodesign Institute (Contributor)
Created2015-03-29
129278-Thumbnail Image.png
Description

We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The

We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

ContributorsWiktor, Peter (Author) / Brunner, Al (Author) / Kahn, Peter (Author) / Qiu, Ji (Author) / Magee, Mitch (Author) / Bian, Xiaofang (Author) / Karthikeyan, Kailash (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2015-03-04
129284-Thumbnail Image.png
Description

High-density electroencephalography was used to evaluate cortical activity during speech comprehension via a sentence verification task. Twenty-four participants assigned true or false to sentences produced with 3 noise-vocoded channel levels (1-unintelligible, 6-decipherable, 16-intelligible), during simultaneous EEG recording. Participant data were sorted into higher- (HP) and lower-performing (LP) groups. The identification

High-density electroencephalography was used to evaluate cortical activity during speech comprehension via a sentence verification task. Twenty-four participants assigned true or false to sentences produced with 3 noise-vocoded channel levels (1-unintelligible, 6-decipherable, 16-intelligible), during simultaneous EEG recording. Participant data were sorted into higher- (HP) and lower-performing (LP) groups. The identification of a late-event related potential for LP listeners in the intelligible condition and in all listeners when challenged with a 6-Ch signal supports the notion that this induced potential may be related to either processing degraded speech, or degraded processing of intelligible speech. Different cortical locations are identified as neural generators responsible for this activity; HP listeners are engaging motor aspects of their language system, utilizing an acoustic–phonetic based strategy to help resolve the sentence, while LP listeners do not. This study presents evidence for neurophysiological indices associated with more or less successful speech comprehension performance across listening conditions.

ContributorsUtianski, Rene (Author) / Caviness, John N. (Author) / Liss, Julie (Author) / College of Health Solutions (Contributor)
Created2015-01-01
129310-Thumbnail Image.png
Description

Sera from patients with ovarian cancer contain autoantibodies (AAb) to tumor-derived proteins that are potential biomarkers for early detection. To detect AAb, we probed high-density programmable protein microarrays (NAPPA) expressing 5177 candidate tumor antigens with sera from patients with serous ovarian cancer (n = 34 cases/30 controls) and measured bound

Sera from patients with ovarian cancer contain autoantibodies (AAb) to tumor-derived proteins that are potential biomarkers for early detection. To detect AAb, we probed high-density programmable protein microarrays (NAPPA) expressing 5177 candidate tumor antigens with sera from patients with serous ovarian cancer (n = 34 cases/30 controls) and measured bound IgG. Of these, 741 antigens were selected and probed with an independent set of ovarian cancer sera (n = 60 cases/60 controls). Twelve potential autoantigens were identified with sensitivities ranging from 13 to 22% at >93% specificity. These were retested using a Luminex bead array using 60 cases and 60 controls, with sensitivities ranging from 0 to 31.7% at 95% specificity. Three AAb (p53, PTPRA, and PTGFR) had area under the curve (AUC) levels >60% (p < 0.01), with the partial AUC (SPAUC) over 5 times greater than for a nondiscriminating test (p < 0.01). Using a panel of the top three AAb (p53, PTPRA, and PTGFR), if at least two AAb were positive, then the sensitivity was 23.3% at 98.3% specificity. AAb to at least one of these top three antigens were also detected in 7/20 sera (35%) of patients with low CA 125 levels and 0/15 controls. AAb to p53, PTPRA, and PTGFR are potential biomarkers for the early detection of ovarian cancer.

ContributorsAnderson, Karen (Author) / Cramer, Daniel W. (Author) / Sibani, Sahar (Author) / Wallstrom, Garrick (Author) / Wong, Jessica (Author) / Park, Jin (Author) / Qiu, Ji (Author) / Vitonis, Allison (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2015-01-01
Description

Widespread contamination of groundwater by chlorinated ethenes and their biological dechlorination products necessitates the reliable monitoring of liquid matrices; current methods approved by the U.S. Environmental Protection Agency (EPA) require a minimum of 5 mL of sample volume and cannot simultaneously detect all transformative products. This paper reports on the

Widespread contamination of groundwater by chlorinated ethenes and their biological dechlorination products necessitates the reliable monitoring of liquid matrices; current methods approved by the U.S. Environmental Protection Agency (EPA) require a minimum of 5 mL of sample volume and cannot simultaneously detect all transformative products. This paper reports on the simultaneous detection of six chlorinated ethenes and ethene itself, using a liquid sample volume of 1 mL by concentrating the compounds onto an 85-µm carboxen-polydimenthylsiloxane solid-phase microextraction fiber in 5 min and subsequent chromatographic analysis in 9.15 min. Linear increases in signal response were obtained over three orders of magnitude (∼0.05 to ∼50 µM) for simultaneous analysis with coefficient of determination (R2) values of ≥ 0.99. The detection limits of the method (1.3–6 µg/L) were at or below the maximum contaminant levels specified by the EPA. Matrix spike studies with groundwater and mineral medium showed recovery rates between 79–108%. The utility of the method was demonstrated in lab-scale sediment flow-through columns assessing the bioremediation potential of chlorinated ethene-contaminated groundwater. Owing to its low sample volume requirements, good sensitivity and broad target analyte range, the method is suitable for routine compliance monitoring and is particularly attractive for interpreting the bench-scale feasibility studies that are commonly performed during the remedial design stage of groundwater cleanup projects.

ContributorsZiv-El, Michal (Author) / Kalinowski, Tomasz (Author) / Krajmalnik-Brown, Rosa (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2014-02-01
129428-Thumbnail Image.png
Description

Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and

Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and there is a need of techniques that can quantify interactions of bacteria with ligands at the single bacterium level. In this work, we present a label-free and real-time plasmonic imaging technique to measure the binding kinetics of ligand interactions with single bacteria, and perform statistical analysis of the heterogeneity. Using the technique, we have studied interactions of antibodies with single Escherichia coli O157:H7 cells and demonstrated a capability of determining the binding kinetic constants of single live bacteria with ligands, and quantify heterogeneity in a microbial population.

ContributorsSyal, Karan (Author) / Wang, Wei (Author) / Shan, Xiaonan (Author) / Wang, Shaopeng (Author) / Chen, Hong-Yuan (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2015-01-15
129434-Thumbnail Image.png
Description

Aquaculture production has nearly tripled in the last two decades, bringing with it a significant increase in the use of antibiotics. Using liquid chromatography/tandem mass spectrometry (LC–MS/MS), the presence of 47 antibiotics was investigated in U.S. purchased shrimp, salmon, catfish, trout, tilapia, and swai originating from 11 different countries. All

Aquaculture production has nearly tripled in the last two decades, bringing with it a significant increase in the use of antibiotics. Using liquid chromatography/tandem mass spectrometry (LC–MS/MS), the presence of 47 antibiotics was investigated in U.S. purchased shrimp, salmon, catfish, trout, tilapia, and swai originating from 11 different countries. All samples (n = 27) complied with U.S. FDA regulations and five antibiotics were detected above the limits of detection: oxytetracycline (in wild shrimp, 7.7 ng/g of fresh weight; farmed tilapia, 2.7; farmed salmon, 8.6; farmed trout with spinal deformities, 3.9), 4-epioxytetracycline (farmed salmon, 4.1), sulfadimethoxine (farmed shrimp, 0.3), ormetoprim (farmed salmon, 0.5), and virginiamycin (farmed salmon marketed as antibiotic-free, 5.2). A literature review showed that sub-regulatory levels of antibiotics, as found here, can promote resistance development; publications linking aquaculture to this have increased more than 8-fold from 1991 to 2013. Although this study was limited in size and employed sample pooling, it represents the largest reconnaissance of antibiotics in U.S. seafood to date, providing data on previously unmonitored antibiotics and on farmed trout with spinal deformities. Results indicate low levels of antibiotic residues and general compliance with U.S. regulations. The potential for development of microbial drug resistance was identified as a key concern and research priority.

ContributorsDone, Hansa (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-01-23
129454-Thumbnail Image.png
Description

Previous studies suggest that bilinguals have certain executive function advantages over monolinguals. However, few studies have examined specific working memory (WM) differences between monolinguals and bilinguals using complex span tasks. In the current study, 52 bilingual and 53 monolingual speakers were administered simple and complex WM span tasks, including a

Previous studies suggest that bilinguals have certain executive function advantages over monolinguals. However, few studies have examined specific working memory (WM) differences between monolinguals and bilinguals using complex span tasks. In the current study, 52 bilingual and 53 monolingual speakers were administered simple and complex WM span tasks, including a backward digit-span task, standard operation span tasks and a non-verbal symmetry span task. WM performance was a strong predictor of performance on other WM tasks, whereas bilingual status was not. Thus, the present study did not find evidence of a bilingual advantage in WM capacity.

ContributorsRatiu, Ileana (Author) / Azuma, Tamiko (Author) / College of Health Solutions (Contributor)
Created2015-01-02