Matching Items (293)
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
130424-Thumbnail Image.png
Description
Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively.

Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.
ContributorsPan, Shihui (Author) / Yan, Ning (Author) / Liu, Xinyue (Author) / Wang, Wenbing (Author) / Zhang, Yongming (Author) / Liu, Rui (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2014-11-01
130419-Thumbnail Image.png
Description
Chloroform and methanol are superior solvents for lipid extraction from photosynthetic microorganisms, because they can overcome the resistance offered by the cell walls and membranes, but they are too toxic and expensive to use for large-scale fuel production. Biomass from the photosynthetic microalga Scenedesmus, subjected to a commercially available pre-treatment

Chloroform and methanol are superior solvents for lipid extraction from photosynthetic microorganisms, because they can overcome the resistance offered by the cell walls and membranes, but they are too toxic and expensive to use for large-scale fuel production. Biomass from the photosynthetic microalga Scenedesmus, subjected to a commercially available pre-treatment technology called Focused-Pulsed® (FP), yielded 3.1-fold more crude lipid and fatty acid methyl ester (FAME) after extraction with a range of solvents. FP treatment increased the FAME-to-crude-lipid ratio for all solvents, which means that the extraction of non-lipid materials was minimized, while the FAME profile itself was unchanged compared to the control. FP treatment also made it possible to use only a small proportion of chloroform and methanol, along with isopropanol, to obtain equivalent yields of lipid and FAME as with 100% chloroform plus methanol.
ContributorsLai, Yenjung Sean (Author) / Parameswaran, Prathap (Author) / Li, Ang (Author) / Baez, Maria (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2014-12-01