Matching Items (237)
Filtering by

Clear all filters

157149-Thumbnail Image.png
Description
A child’s death evokes intense and long-lasting grief in parents. However, few interventions exist to address the needs of this population. This mixed methods project used secondary data to evaluate the impact of a four-day, grief-focused mindfulness-based retreat on bereaved parents.

A quasi-experimental design with two nonequivalent groups (intervention grou

A child’s death evokes intense and long-lasting grief in parents. However, few interventions exist to address the needs of this population. This mixed methods project used secondary data to evaluate the impact of a four-day, grief-focused mindfulness-based retreat on bereaved parents.

A quasi-experimental design with two nonequivalent groups (intervention group n = 25, comparison group n = 41) and three observations (pretest and two posttests) was used. Mixed-model repeated-measures analyses of variance were used to assess change over time for the intervention group and relative to a no-intervention comparison group. Outcome measures were depressive and anxious responses, measured by the Hopkins Symptom Checklist-25 (HSCL-25); trauma responses, measured by the Impact of Event Scale-Revised (IES-R); mindfulness, measured by the Five Facet Mindfulness Questionnaire (FFMQ); and self-compassion, measured by the Self-Compassion Scale-Short Form (SCS-SF). The intervention group was expected to show significant decreases in psychological distress and significant increases in mindfulness and self-compassion over time and relative to the comparison group.

The qualitative component consisted of semi-structured interviews with nineteen retreat participants using a constructivist phenomenological approach in order to obtain a richer understanding of the retreat’s impact on participants’ lives.

There were significant time by condition interactions with small to medium effect sizes for the IES-R and its subscales, the HSCL-25 and its depression subscale, and three FFMQ scales (describe, act with awareness, and nonjudge), all favoring the intervention group. However, not all benefits were maintained at follow-up.

Psychoeducation and relationships emerged as key qualitative themes. Psychoeducation included benefits related to present-moment awareness, fully inhabiting grief, self-compassion, emotional equanimity, and reduced distress or judgment of distress. Relationships included benefits related to giving and receiving social support, emotional expression and sharing, validation and normalization of grief-related experiences, resonance and self-other awareness, self-appraisal, changes in relationships, and connection to a deceased child. Mindfulness seemed to be a key component in reducing trauma responses. Relationship factors, combined with psychoeducation and present-moment awareness, seemed responsible for increasing participants’ capacity for nonjudgmental acceptance of experiences.

The retreat may be an effective intervention for helping parents cope with and express their grief and warrants further study.
ContributorsThieleman, Kara (Author) / Cacciatore, Joanne (Thesis advisor) / Segal, Elizabeth (Committee member) / Hodge, David (Committee member) / Arizona State University (Publisher)
Created2019
141465-Thumbnail Image.png
Description

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children with ASD, and significantly worsen their behavior and their quality of life. Here we first summarize previously published data supporting that GI dysfunction is common in individuals with ASD and the role of the microbiota in ASD. Second, by comparing with other publically available microbiome datasets, we provide some evidence that the shifted microbiota can be a result of westernization and that this shift could also be framing an altered immune system. Third, we explore the possibility that gut–brain interactions could also be a direct result of microbially produced metabolites.

ContributorsKrajmalnik-Brown, Rosa (Author) / Lozupone, Catherine (Author) / Kang, Dae Wook (Author) / Adams, James (Author) / Biodesign Institute (Contributor)
Created2015-03-12
141489-Thumbnail Image.png
Description

Background: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children

Background: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children with ASD often suffer gastrointestinal (GI) problems that correlate with ASD severity. Several previous studies have reported abnormal gut bacteria in children with ASD. The gut microbiome-ASD connection has been tested in a mouse model of ASD, where the microbiome was mechanistically linked to abnormal metabolites and behavior. Similarly, a study of children with ASD found that oral non-absorbable antibiotic treatment improved GI and ASD symptoms, albeit temporarily. Here, a small open-label clinical trial evaluated the impact of Microbiota Transfer Therapy (MTT) on gut microbiota composition and GI and ASD symptoms of 18 ASD-diagnosed children.

Results: MTT involved a 2-week antibiotic treatment, a bowel cleanse, and then an extended fecal microbiota transplant (FMT) using a high initial dose followed by daily and lower maintenance doses for 7–8 weeks. The Gastrointestinal Symptom Rating Scale revealed an approximately 80% reduction of GI symptoms at the end of treatment, including significant improvements in symptoms of constipation, diarrhea, indigestion, and abdominal pain. Improvements persisted 8 weeks after treatment. Similarly, clinical assessments showed that behavioral ASD symptoms improved significantly and remained improved 8 weeks after treatment ended. Bacterial and phage deep sequencing analyses revealed successful partial engraftment of donor microbiota and beneficial changes in the gut environment. Specifically, overall bacterial diversity and the abundance of Bifidobacterium, Prevotella, and Desulfovibrio among other taxa increased following MTT, and these changes persisted after treatment stopped (followed for 8 weeks).

Conclusions: This exploratory, extended-duration treatment protocol thus appears to be a promising approach to alter the gut microbiome and virome and improve GI and behavioral symptoms of ASD. Improvements in GI symptoms, ASD symptoms, and the microbiome all persisted for at least 8 weeks after treatment ended, suggesting a long-term impact.

ContributorsKang, Dae Wook (Author) / Adams, James (Author) / Gregory, Ann C. (Author) / Borody, Thomas (Author) / Chittick, Lauren (Author) / Fasano, Alessio (Author) / Khoruts, Alexander (Author) / Geis, Elizabeth (Author) / Maldonado Ortiz, Juan (Author) / McDonough-Means, Sharon (Author) / Pollard, Elena (Author) / Roux, Simon (Author) / Sadowsky, Michael J. (Author) / Schwarzberg Lipson, Karen (Author) / Sullivan, Matthew B. (Author) / Caporaso, J. Gregory (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2017-01-23
141505-Thumbnail Image.png
Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

ContributorsKang, Dae Wook (Author) / Park, Jin (Author) / Ilhan, Zehra (Author) / Wallstrom, Garrick (Author) / LaBaer, Joshua (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2013-06-03