Matching Items (6)
152085-Thumbnail Image.png
Description
Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for

Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for large–scale growth of modified Synechocystis include abiotic stress, microbial contamination and high processing costs of product and cell material. Research reported in this dissertation contributes to solutions to these challenges. First, abiotic stress was addressed by overexpression of the heat shock protein ClpB1. In contrast to the wild type, the ClpB1 overexpression mutant (Slr1641+) tolerated rapid temperature changes, but no difference was found between the strains when temperature shifts were slower. Combination of ClpB1 overexpression with DnaK2 overexpression (Slr1641+/Sll0170+) further increased thermotolerance. Next, we used a Synechocystis strain that carries an introduced isoprene synthase gene (IspS+) and that therefore produces isoprene. We attempted to increase isoprene yields by overexpression of key enzymes in the methyl erythritol phosphate (MEP) pathway that leads to synthesis of the isoprene precursor. Isoprene production was not increased greatly by MEP pathway induction, likely because of limitations in the affinity of the isoprene synthase for the substrate. Finally, two extraction principles, two–phase liquid extraction (e.g., with an organic and aqueous phase) and solid–liquid extraction (e.g., with a resin) were tested. Two–phase liquid extraction is suitable for separating isoprene but not fatty acids from the culture medium. Fatty acid removal required acidification or surfactant addition, which affected biocompatibility. Therefore, improvements of both the organism and product–harvesting methods can contribute to enhancing the potential of cyanobacteria as solar–powered biocatalysts for the production of petroleum substitutes.
ContributorsGonzalez Esquer, Cesar Raul (Author) / Vermaas, Willem (Thesis advisor) / Chandler, Douglas (Committee member) / Bingham, Scott (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2013
151019-Thumbnail Image.png
Description
Water quality in surface water is frequently degraded by fecal contamination from human and animal sources, imposing negative implications for recreational water use and public safety. For this reason it is critical to identify the source of fecal contamination in bodies of water in order to take proper corrective actions

Water quality in surface water is frequently degraded by fecal contamination from human and animal sources, imposing negative implications for recreational water use and public safety. For this reason it is critical to identify the source of fecal contamination in bodies of water in order to take proper corrective actions for controlling fecal pollution. Bacteroides genetic markers have been widely used to differentiate human from other sources of fecal bacteria in water. The results of this study indicate that many assays currently used to detect human-specific Bacteroides produce false positive results in the presence of freshwater fish. To further characterize Bacteroides from fish and human, the fecal samples were cultured, speciated, and identified. As a result, forty six new Bacteroides 16S rRNA gene sequences have been deposited to the NCBI database. These sequences, along with selected animal fecal sample Bacteroides, were aligned against human B. volgatus, B. fragilis, and B. dorei to identify multi-segmented variable regions within the 16S rRNA gene sequence. The collected sequences were truncated and used to construct a cladogram, showing a clear separation between human B. dorei and Bacteroides from other sources. A proposed strategy for source tracking was field tested by collecting water samples from central AZ source water and three different recreational ponds. PCR using HF134 and HF183 primer sets were performed and sequences for positive reactions were then aligned against human Bacteroides to identify the source of contamination. For the samples testing positive using the HF183 primer set (8/13), fecal contamination was determined to be from human sources. To confirm the results, PCR products were sequenced and aligned against the four variable regions and incorporated within the truncated cladogram. As expected, the sequences from water samples with human fecal contamination grouped within the human clade. As an outcome of this study, a tool box strategy for Bacteroides source identification relying on PCR amplification, variable region analysis, human-specific Bacteroides PCR assays, and subsequent truncated cladogram grouping analysis has been developed. The proposed strategy offers a new method for microbial source tracking and provides step-wise methodology essential for identifying sources of fecal pollution.
ContributorsKabiri-Badr, Leila (Author) / Abbaszadegan, Morteza (Thesis advisor) / Bingham, Scott (Committee member) / Rock, Channah (Committee member) / Fox, Peter (Committee member) / Mclain, Jean (Committee member) / Arizona State University (Publisher)
Created2012
157372-Thumbnail Image.png
Description
Microscopic algae have been investigated extensively by researchers for decades for their ability to bioremediate wastewater and flue gas while producing valuable biomass for use as feed, fuel, fertilizer, nutraceutical, and other specialty products. Reports of the exciting commercial potential of this diverse group of organisms started appearing in

Microscopic algae have been investigated extensively by researchers for decades for their ability to bioremediate wastewater and flue gas while producing valuable biomass for use as feed, fuel, fertilizer, nutraceutical, and other specialty products. Reports of the exciting commercial potential of this diverse group of organisms started appearing in the literature as early as the 1940’s. However, nearly 80 years later, relatively few successful commercial microalgae installations exist and algae have not yet reached agricultural commodity status. This dissertation examines three major bottlenecks to commercial microalgae production including lack of an efficient and economical cultivation strategy, poor management of volatile waste nutrients, and costly harvesting and post processing strategies. A chapter is devoted to each of these three areas to gain a better understanding of each bottleneck as well as strategies for overcoming them.

The first chapter demonstrates the capability of two strains of Scenedesmus acutus to grow in ultra-high-density (>10 g L-1 dry weight biomass) cultures in flat panel photobioreactors for year-round production in the desert Southwest with record volumetric biomass productivity. The advantages and efficiency of high-density cultivation are discussed. The second chapter focuses on uptake and utilization of the volatile components of wastewater: ammonia and carbon dioxide. Scenedesmus acutus was cultured on wastewater from both municipal and agricultural origin and was shown to perform significantly better on flue gas as compared to commercial grade CO2 and just as well on waste nutrients as the commonly used BG-11 laboratory culture media, all while producing up to 50% lipids of the dry weight biomass suitable for use in biodiesel. The third chapter evaluates the feasibility of using gravity sedimentation for the harvesting of the difficult-to-separate Scenedesmus acutus green algae biomass followed by microfluidization to disrupt the cells. Lipid-extracted biomass was then studied as a fertilizer for plants and shown to have similar performance to a commercially available 4-6-6 fertilizer. Based on the work from these three chapters, a summary of modifications are suggested to help current and future microalgae companies be more competitive in the marketplace with traditional agricultural commodities.
ContributorsWray, Joshua (Author) / Dempster, Thomas (Thesis advisor) / Roberson, Robert (Thesis advisor) / Bingham, Scott (Committee member) / Neuer, Susanne (Committee member) / Arizona State University (Publisher)
Created2019
154651-Thumbnail Image.png
Description
Euendolithic cyanobacteria have the remarkable ability to actively excavate and grow within certain minerals. Their activity leads to increased erosion of marine and terrestrial carbonates, negatively affecting coral reef and bivalve ecology. Despite their environmental relevance, the boring mechanism has remained elusive and paradoxical, in that cyanobacteria alkalinize their surroundings,

Euendolithic cyanobacteria have the remarkable ability to actively excavate and grow within certain minerals. Their activity leads to increased erosion of marine and terrestrial carbonates, negatively affecting coral reef and bivalve ecology. Despite their environmental relevance, the boring mechanism has remained elusive and paradoxical, in that cyanobacteria alkalinize their surroundings, typically leading to carbonate precipitation, not dissolution. Thus, euendoliths must rely on unique adaptations to bore. Recent work using the filamentous model euendolith Mastigocoleus testarum strain BC008 indicated that excavation relied on transcellular calcium transport mediated by P-type ATPases, but the phenomenon remained unclear. Here I present evidence that excavation in M. testarum involves an unprecedented set of adaptations. Long-range calcium transport is achieved through the coordinated pumping of multiple cells, orchestrated by the localization of calcium ATPases in a repeating annular pattern, positioned at a single cell pole, adjacent to each cell septum along the filament. Additionally, specialized chlorotic cells that I named calcicytes, differentiate and accumulate calcium at concentrations more than 500 fold those of canonical cells, likely allowing for fast calcium flow at non-toxic concentrations through undifferentiated cells. I also show, using 13C stable isotope tracers and NanoSIMS imaging, that endolithic M. testarum derives most of its carbon from the mineral carbonates it dissolves, the first autotroph ever shown to fix mineral carbon, confirming the existence of a direct link between oxidized solid carbon pools and reduced organic pools in the biosphere. Finally, using genomic and transcriptomic approaches, I analyze gene expression searching for additional adaptations related to the endolithic lifestyle. A large and diverse set of genes (24% of 6917 genes) were significantly differentially regulated while boring, including several master regulators and genes expectedly needed under this condition (such as transport, nutrient scavenging, oxidative stress, and calcium-binding protein genes). However, I also discovered the up-regulation of several puzzling gene sets involved in alternative carbon fixation pathways, anaerobic metabolism, and some related to photosynthesis and respiration. This transcriptomic data provides us with several new, readily testable hypotheses regarding adaptations to the endolithic lifestyle. In all, my data clearly show that boring organisms show extraordinarily interesting adaptations.
ContributorsGuida, Brandon Scott (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Chandler, Douglas (Committee member) / Bingham, Scott (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2016
155516-Thumbnail Image.png
Description
The basic scheme for photosynthesis suggests the two photosystems existing in parity with one another. However, cyanobacteria typically maintain significantly more photosystem I (PSI) than photosystem II (PSII) complexes. I set out to evaluate this disparity through development and analysis of multiple mutants of the genetically tractable cyanobacterium Synechocystis sp.

The basic scheme for photosynthesis suggests the two photosystems existing in parity with one another. However, cyanobacteria typically maintain significantly more photosystem I (PSI) than photosystem II (PSII) complexes. I set out to evaluate this disparity through development and analysis of multiple mutants of the genetically tractable cyanobacterium Synechocystis sp. PCC 6803 that exhibit a range of expression levels of the main proteins present in PSI (Chapter 2). One hypothesis was that the higher abundance of PSI in this organism is used to enable more cyclic electron flow (CEF) around PSI to contribute to greater ATP synthesis. Results of this study show that indeed CEF is enhanced by the high amount of PSI present in WT. On the other hand, mutants with less PSI and less cyclic electron flow appeared able to maintain healthy levels of ATP synthesis through other compensatory mechanisms. Reduction in PSI abundance is naturally associated with reduced chlorophyll content, and mutants with less PSI showed greater primary productivity as light intensity increased due to increased light penetration in the cultures. Another question addressed in this research project involved the effect of deletion of flavoprotein 3 (an electron sink for PSI-generated electrons) from mutant strains that produce and secrete a fatty acid (Chapter 3). Removing Flv3 increased fatty acid production, most likely due to increased abundance of reducing equivalents that are key to fatty acid biosynthesis. Additional components of my dissertation research included examination of alkane biosynthesis in Synechocystis (Chapter 4), and effects of attempting to overexpress fibrillin genes for enhancement of stored compounds (Chapter 5). Synechocystis is an excellent platform for metabolic engineering studies with its photosynthetic capability and ease of genetic alteration, and the presented research sheds light on multiple aspects of its fundamental biology.
ContributorsMoore, Vickie (Author) / Vermaas, Willem (Thesis advisor) / Wang, Xuan (Committee member) / Roberson, Robert (Committee member) / Gaxiola, Roberto (Committee member) / Bingham, Scott (Committee member) / Arizona State University (Publisher)
Created2017
128918-Thumbnail Image.png
Description

Plant mitochondria signal to the nucleus leading to altered transcription of nuclear genes by a process called mitochondrial retrograde regulation (MRR). MRR is implicated in metabolic homeostasis and responses to stress conditions. Mitochondrial reactive oxygen species (mtROS) are a MRR signaling component, but whether all MRR requires ROS is not

Plant mitochondria signal to the nucleus leading to altered transcription of nuclear genes by a process called mitochondrial retrograde regulation (MRR). MRR is implicated in metabolic homeostasis and responses to stress conditions. Mitochondrial reactive oxygen species (mtROS) are a MRR signaling component, but whether all MRR requires ROS is not established. Inhibition of the cytochrome respiratory pathway by antimycin A (AA) or the TCA cycle by monofluoroacetate (MFA), each of which initiates MRR, can increase ROS production in some plant cells. We found that for AA and MFA applied to leaves of soil-grown Arabidopsis thaliana plants, ROS production increased with AA, but not with MFA, allowing comparison of transcript profiles under different ROS conditions during MRR. Variation in transcript accumulation over time for eight nuclear encoded mitochondrial protein genes suggested operation of both common and distinct signaling pathways between the two treatments. Consequences of mitochondrial perturbations for the whole transcriptome were examined by microarray analyses. Expression of 1316 and 606 genes was altered by AA and MFA, respectively. A subset of genes was similarly affected by both treatments, including genes encoding photosynthesis-related proteins. MFA treatment resulted in more down-regulation. Functional gene category (MapMan) and cluster analyses showed that genes with expression levels affected by perturbation from AA or MFA inhibition were most similarly affected by biotic stresses such as pathogens. Overall, the data provide further evidence for the presence of mtROS-independent MRR signaling, and support the proposed involvement of MRR and mitochondrial function in plant responses to biotic stress.

ContributorsUmbach, Ann L. (Author) / Zarkovic, Jelena (Author) / Yu, Jianping (Author) / Ruckle, Michael E. (Author) / McIntosh, Lee (Author) / Hock, Jeffery (Author) / Bingham, Scott (Author) / White, Samuel (Author) / George, Rajani (Author) / Subbaiah, Chalivendra (Author) / Rhoads, David M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-09-18