Matching Items (66)
Filtering by

Clear all filters

137695-Thumbnail Image.png
Description
The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks

The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks to compare the abuse potential of MDPV with one of the emergent synthetic cathinones 4-methylethcathinone (4-MEC), based on their respective ability to lower current thresholds in an intracranial self-stimulation (ICSS) paradigm. Following acute administration (0.1, 0.5, 1 and 2 mg/kg i.p.) MDPV was found to significantly lower ICSS thresholds at all doses tested (F4,35=11.549, p<0.001). However, following acute administration (0.3,1,3,10,30 mg/kg i.p) 4-MEC produced no significant ICSS threshold depression (F5,135= 0.622, p = 0.684). Together these findings suggest that while MDPV may possess significant abuse potential, other synthetic cathinones such as 4-MEC may have a drastically reduced potential for abuse.
ContributorsWegner, Scott Andrew (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Sanabria, Federico (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2013-05
152286-Thumbnail Image.png
Description
Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus with adeno- associated viral vectors containing the coding sequence for short interfering (si)RNA directed against BDNF or a scrambled sequence (Scr), with both containing the coding information for green fluorescent protein to aid in anatomical localization. Rats were then chronically restrained (wire mesh, 6h/d/21d) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trial. Rats in the Str-Imm group, regardless of viral vector contents, committed more errors in the spatial reference memory domain than did non-stressed controls. Importantly, the typical improvement in spatial memory following recovery from chronic stress was blocked with the siRNA against BDNF, as Str-Rec-siRNA performed worse on the RAWM compared to the non-stressed controls or Str-Rec-Scr. These effects were specific for the reference memory domain as repeated entry errors that reflect spatial working memory were unaffected by stress condition or viral vector contents. These results demonstrate that hippocampal BDNF is necessary for the recovery from stress-induced hippocampal dependent spatial memory deficits in the reference memory domain.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Taylor, Sara (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
152325-Thumbnail Image.png
Description
The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex

The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex (mPFC), and amygdala, are of special interest due to documented structural changes and their implication in post-traumatic stress disorder (PTSD). One of many notable chronic stress-induced changes include dendritic arbor restructuring, which reflect plasticity patterns in parallel with the direction of alterations observed in functional imaging studies in PTSD patients. For instance, chronic stress produces dendritic retraction in the hippocampus and mPFC, but dendritic hypertrophy in the amygdala, consistent with functional imaging in patients with PTSD. Some have hypothesized that these limbic region's modifications contribute to one's susceptibility to develop PTSD following a traumatic event. Consequently, we used a familiar chronic stress procedure in a rat model to create a vulnerable brain that might develop traits consistent with PTSD when presented with a challenge. In adult male rats, chronic stress by wire mesh restraint (6h/d/21d) was followed by a variety of behavioral tasks including radial arm water maze (RAWM), fear conditioning and extinction, and fear memory reconsolidation to determine chronic stress effects on behaviors mediated by these limbic structures. In chapter 2, we corroborated past findings that chronic stress caused hippocampal CA3 dendritic retraction. Importantly, we present new findings that CA3 dendritic retraction corresponded with poor spatial memory in the RAWM and that these outcomes reversed after a recovery period. In chapter 3, we also showed that chronic stress impaired mPFC-mediated extinction memory, findings that others have reported. Using carefully assessed behavior, we present new findings that chronic stress impacted nonassociative fear by enhancing contextual fear during extinction that generalized to a new context. Moreover, the generalization behavior corresponded with enhanced functional activation in the hippocampus and amygdala during fear extinction memory retrieval. In chapter 5, we showed for the first time that chronic stress enhanced amygdala functional activation during fear memory retrieval, i.e., reactivation. Moreover, these enhanced fear memories were resistant to protein synthesis interference to disrupt a previously formed memory, called reconsolidation in a novel attempt to weaken chronic stress enhanced traumatic memory. Collectively, these studies demonstrated the plastic and dynamic effects of chronic stress on limbic neurocircuitry implicated in PTSD. We showed that chronic stress created a structural and functional imbalance across the hippocampus, mPFC, and amygdala, which lead to a PTSD-like phenotype with persistent and exaggerated fear following fear conditioning. These behavioral disruptions in conjunction with morphological and functional imaging data reflect a chronic stress-induced imbalance between hippocampal and mPFC regulation in favor of amygdala function overdrive, and supports a novel approach for traumatic memory processing in PTSD.
ContributorsHoffman, Ann (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Hammer, Jr., Ronald P. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
136859-Thumbnail Image.png
Description
Menopause is reproductive senescence characterized by a loss of ovarian estrogen and progesterone. Women can experience cognitive decline and other negative symptoms with the loss of ovarian hormones (Sherwin, 2006). While hormone therapies (HT) can treat symptoms of menopause and may have neuroprotective properties, such as the potential to decrease

Menopause is reproductive senescence characterized by a loss of ovarian estrogen and progesterone. Women can experience cognitive decline and other negative symptoms with the loss of ovarian hormones (Sherwin, 2006). While hormone therapies (HT) can treat symptoms of menopause and may have neuroprotective properties, such as the potential to decrease the risk of Alzheimer's Disease (Behl & Manthey, 2000), there are many effects of current HTs that are not ideal. Indeed, optimizing conventional HTs has proven complex, indicating a need for alternative therapies. Phytoestrogens are estrogenic compounds found naturally in plants such as soybeans, that could provide new treatment options. Dietary phytoestrogens can benefit memory in the rodent model (Luine, 2006), although the mechanism underlying these effects is unclear. Basal forebrain cholinergic projections have been shown to mediate the cognitive benefits of estrogen (Gibbs, 2010); we hypothesize that phytoestrogens act similarly, via the cholinergic system, to impact memory. We administered varying doses of phytoestrogen-containing diets to ovariectomized female rats, and used the place recognition task to evaluate spatial memory. Brains were then analyzed for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine, in the vertical-diagonal bands (VDB) and the medial septum (MS) of the basal forebrain. Results showed that ChAT cell counts in the VDB were marginally higher with dietary phytoestrogen treatment. Further, VDB ChAT cell counts positively correlated with place recognition performance, indicating that animals with more VDB ChAT neurons exhibited better spatial memory performance. These results suggest that phytoestrogens might act similarly to natural, endogenously circulating estrogens, and identify phytoestrogens as a direction for investigation as a HT.
ContributorsMousa, Abeer Abdul (Author) / Bimonte-Nelson, Heather (Thesis director) / Olive, Foster (Committee member) / Deviche, Pierre (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / School for the Science of Health Care Delivery (Contributor)
Created2014-05
136649-Thumbnail Image.png
Description
Women are now living longer than ever before, yet the age of spontaneous menopause has remained stable. This results in an increasing realization of the need for an effective treatment of cognitive and physiological menopausal and post-menopausal symptoms. The most common estrogen component of hormone therapy, conjugated equine estrogens (CEE;

Women are now living longer than ever before, yet the age of spontaneous menopause has remained stable. This results in an increasing realization of the need for an effective treatment of cognitive and physiological menopausal and post-menopausal symptoms. The most common estrogen component of hormone therapy, conjugated equine estrogens (CEE; Premarin) contains many estrogens that are not endogenous to the human body, and that may or may not be detrimental to cognition (Campbell and Whitehead, 1977; Engler-Chiurazzi et al., 2011; Acosta et al., 2010). We propose the use of a novel treatment option in the form of a naturally-circulating (bioidentical) estrogen called estriol. Due to estriol’s observed positive effects on synaptic functioning and neuroprotective effects in the hippocampus (Ziehn et al., 2012; Goodman et al., 1996), a brain structure important for spatial learning and memory, estriol is promising as a hormone therapy option that may attenuate menopausal- and age- related memory decline. In the current study, we administered one of the three bioidentical estrogens (17β-Estradiol, 4.0 µg/day; Estrone, 8.0 µg/day; Estriol, 8.0 µg/day) or the vehicle polyethylene glycol by subcutaneous osmotic pump to ovariectomized Fisher-344 rats. We compared these groups to each other using a battery of spatial learning tasks, including the water radial-arm maze (WRAM), Morris water maze (MM), and delayed-match-to-sample maze (DMS). We found that all estrogens impaired performance on the WRAM compared to vehicle, while 17β-estradiol administration improved overnight forgetting performance for the MM. The estriol group showed no cognitive enhancements relative to vehicle; however, there were several factors indicating that both our estriol and estradiol doses were too high, so future studies should investigate whether lower doses of estriol may be beneficial to cognition.
ContributorsStonebarger, Gail Ashley (Author) / Bimonte-Nelson, Heather (Thesis director) / Knight, George (Committee member) / Engler-Chiurrazzi, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2015-05
137089-Thumbnail Image.png
Description
Following natural menopause, androstenedione becomes the main hormone secreted by the follicle-depleted ovaries. We have previously evaluated high physiological doses of androstenedione in the female rodent, and found relations between higher androstenedione levels and spatial memory impairment; this relationship was shown when androstenedione levels were of endogenous, or exogenous, origin

Following natural menopause, androstenedione becomes the main hormone secreted by the follicle-depleted ovaries. We have previously evaluated high physiological doses of androstenedione in the female rodent, and found relations between higher androstenedione levels and spatial memory impairment; this relationship was shown when androstenedione levels were of endogenous, or exogenous, origin (Acosta et al., 2009, Camp et al., 2012). This androstenedione-induced memory impairment in females led us to question whether this androgen also impairs memory in males; no study has yet evaluated androstenedione's impact on cognition in the male rodent model. This is a clinically relevant question, as androstenedione is a steroid of abuse. In the current study, four-month old male rats were given either a daily injection of androstenedione, androstenedione with anastrozole or vehicle (polyethylene glycol). Subjects completed a battery of cognitive tasks evaluating spatial working, reference, and recent memory including the water radial arm maze (WRAM), Morris water maze (MM), and delayed match-to-sample maze (DMTS). We found that androstenedione administration impaired spatial cognitive performance in MM on early overnight forgetting and DMTS early recent memory trials across all days of testing. In addition, we found that androstenedione with anastrozole administration impaired spatial cognitive performance in the learning phases and early overnight forgetting in the MM but had no impact in DMTS testing. There were no significant differences in the WRAM maze for either group. Our findings suggest that androstenedione can impair spatial reference and early recent memory, and that anastrozole reverses this impairment for early recent memory, but not reference memory. Interpreted in the context of hormone conversion, androstenedione's effects on spatial learning and memory may be due, in part, to its conversion to estrone.
ContributorsTorres, Laura Maria (Co-author) / Camp, Bryan (Co-author) / Karber, Lily (Co-author) / Hiroi, Ryoko (Co-author, Committee member) / Bimonte-Nelson, Heather (Co-author, Thesis director) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
137674-Thumbnail Image.png
Description
Sports related concussions, or mild traumatic brain injuries (mTBI), have recently increased in prevalence, and thus gained a great deal of recognition from the public and the media. While the acute symptoms associated with concussions are well known, which include headaches, dizziness, vomiting, and fatigue, recent research has indicated that

Sports related concussions, or mild traumatic brain injuries (mTBI), have recently increased in prevalence, and thus gained a great deal of recognition from the public and the media. While the acute symptoms associated with concussions are well known, which include headaches, dizziness, vomiting, and fatigue, recent research has indicated that there can be severe chronic consequences of multiple conditions. Most notably, a disease called Chronic Traumatic Encephalopathy (CTE) has been linked to multiple mTBIs, which produces symptoms similar to Alzheimer's disease and dementia, in addition to personality changes, increased suicidality, and in some cases death. This knowledge has led the NFL to take steps to protect their players, and increase both the understanding and awareness of the problems associated with multiple concussions. This comes with many problems, however, as players and fans alike are quick to resist any type of change to the rules or policies present in football, in fear that it may damage the integrity of the game. The NFL is thus forced into a difficult position, and must balance public opinion and player safety. There are things that can be done, however, that do not threaten the game itself, such as investing in concussion research and safety equipment design that will more effectively protect the brain from concussions.
ContributorsAiello, Mimi Elizabeth (Author) / Olive, M. Foster (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Camp, Bryan (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2013-05
136843-Thumbnail Image.png
Description
An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next

An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next few years.
ContributorsNelson, Nicholas Alan (Author) / Olive, M. Foster (Thesis director) / Brewer, Gene (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-05
137535-Thumbnail Image.png
Description
There is preclinical evidence that the detrimental cognitive effects of hormone loss can be ameliorated by estrogen therapy (Bimonte, Acosta, & Talboom, 2010), however, one of the primary concerns with current hormone therapies is that they are nonselective, leading to increased risk of breast and endometrial cancers as well as

There is preclinical evidence that the detrimental cognitive effects of hormone loss can be ameliorated by estrogen therapy (Bimonte, Acosta, & Talboom, 2010), however, one of the primary concerns with current hormone therapies is that they are nonselective, leading to increased risk of breast and endometrial cancers as well as heart disease. Thus, in order to achieve a successful and clinically relevant long-term hormone therapy option, it is optimal to find an estrogen therapy regimen that is selective to its target tissue. Recently, phytoestrogens have been found to exert selective, beneficial effects on cognition and brain. For example, genistein and diadzein produce neuroprotective effects in cognitive brain regions (Zhao, Chen, & Diaz Brinton, 2002). The purpose of this study was threefold: 1) to examine the cognitive impact of phytoestrogens in young ovariectomized rats, 2) to replicate the dose effects found in the Luine study (Luine et al., 2006), while controlling for manufacturer differences, and 3) to assess if the rodent diet used in our laboratory has an estrogenic-like cognitive impact.The current findings suggest that, at least for object memory, diets containing varying amounts of phytoestrogens can alter cognition, with diets containing high amounts of phytoestrogens showing potential benefits to this type of memory.
ContributorsWhitton, Elizabeth Nicole (Author) / Bimonte-Nelson, Heather (Thesis director) / Presson, Clark (Committee member) / Baxter, Leslie (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2013-05
137433-Thumbnail Image.png
ContributorsChandler, N. Kayla (Author) / Neisewander, Janet (Thesis director) / Sanabria, Federico (Committee member) / Olive, M. Foster (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05