Matching Items (143)
Filtering by

Clear all filters

134018-Thumbnail Image.png
Description
Approximately 248 million people in the world are currently living with chronic Hepatitis B virus (HBV) infection. HBV and HCV infections are the primary cause of liver diseases such as cirrhosis and hepatocellular carcinomas in the world with an estimated 1.4 million deaths annually. HBV in the Republic of Peru

Approximately 248 million people in the world are currently living with chronic Hepatitis B virus (HBV) infection. HBV and HCV infections are the primary cause of liver diseases such as cirrhosis and hepatocellular carcinomas in the world with an estimated 1.4 million deaths annually. HBV in the Republic of Peru was used as a case study of an emerging and rapidly spreading disease in a developing nation. Wherein, clinical diagnosis of HBV infections in at-risk communities such the Amazon Region and the Andes Mountains are challenging due to a myriad of reasons. High prices of clinical diagnosis and limited access to treatment are alone the most significant deterrent for individuals living in at-risk communities to get the much need help. Additionally, limited testing facilities, lack of adequate testing policies or national guidelines, poor laboratory capacity, resource-limited settings, geographical isolation, and public mistrust are among the chief reasons for low HBV testing. Although, preventative vaccination programs deployed by the Peruvian health officials have reduced the number of infected individuals by year and region. To significantly reduce or eradicate HBV in hyperendemic areas and countries such as Peru, preventative clinical diagnosis and vaccination programs are an absolute necessity. Consequently, the need for a portable low-priced diagnostic platform for the detection of HBV and other diseases is substantial and urgent not only in Peru but worldwide. Some of these concerns were addressed by designing a low-cost, rapid detection platform. In that, an immunosignature technology (IMST) slide used to test for reactivity against the presence of antibodies in the serum-sample was used to test for picture resolution and clarity. IMST slides were scanned using a smartphone camera placed on top of the designed device housing a circuit of 32 LED lights at 647 nm, an optical magnifier at 15X, and a linear polarizing film sheet. Tow 9V batteries powered the scanning device LED circuit ensuring enough lighting. The resulting pictures from the first prototype showed that by lighting the device at 647 nm and using a smartphone camera, the camera could capture high-resolution images. These results conclusively indicate that with any modern smartphone camera, a small box lighted to 647 nm, and optical magnifier; a powerful and expensive laboratory scanning machine can be replaced by another that is inexpensive, portable and ready to use anywhere.
ContributorsMakimaa, Heyde (Author) / Holechek, Susan (Thesis director) / Stafford, Phillip (Committee member) / Jayasuriya, Suren (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133993-Thumbnail Image.png
Description
Monoclonal antibody therapy focuses on engineering immune cells to target specific peptide sequences indicative of disease. An impediment in the continued advancement of this market is the lack of an efficient, inexpensive means of characterization that can be broadly applied to any antibody while still providing high-density data. Many characterization

Monoclonal antibody therapy focuses on engineering immune cells to target specific peptide sequences indicative of disease. An impediment in the continued advancement of this market is the lack of an efficient, inexpensive means of characterization that can be broadly applied to any antibody while still providing high-density data. Many characterization methods address an antibody's affinity for its cognate sequence but overlook other important aspects of binding behavior such as off-target binding interactions. The purpose of this study is to demonstrate how the binding intensity between an antibody and a library of random-sequence peptides, otherwise known as an immunosignature, can be evaluated to determine antibody specificity and polyreactivity. A total of 24 commercially available monoclonal antibodies were assayed on 125K and 330K peptide microarrays and analyzed using a motif clustering program to predict candidate epitopes within each antigen sequence. The results support the further development of immunosignaturing as an antibody characterization tool that is relevant to both therapeutic and non-therapeutic antibodies.
ContributorsDai, Jennifer T. (Author) / Stafford, Phillip (Thesis director) / Diehnelt, Chris (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135353-Thumbnail Image.png
Description
Research on human grasp typically involves the grasp of objects designed for the study of fingertip forces. Instrumented objects for such studies have often been designed for the simulation of functional tasks, such as feeding oneself, or for rigidity such that the objects do not deform when grasped. The goal

Research on human grasp typically involves the grasp of objects designed for the study of fingertip forces. Instrumented objects for such studies have often been designed for the simulation of functional tasks, such as feeding oneself, or for rigidity such that the objects do not deform when grasped. The goal of this thesis was to design a collapsible, instrumented object to study grasp of breakable objects. Such an object would enable experiments on human grip responses to unexpected finger-object events as well as anticipatory mechanisms once object fragility has been observed. The collapsible object was designed to be modular to allow for properties such as friction and breaking force to be altered. The instrumented object could be used to study both human and artificial grasp.
ContributorsTorrez, Troy (Author) / Santos, Veronica (Thesis director) / Santello, Marco (Committee member) / Artemiadis, Panagiotis (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
135435-Thumbnail Image.png
Description
In this project, biochemical characteristics of peptide binding agents, synthetic antibodies or synbodies, were examined with respect to the capture efficiency and specific binding ability to norovirus. Norovirus, although generally not a deadly pathogen, is the most common cause of acute gastroenteritis and outbreaks present a large social and financial

In this project, biochemical characteristics of peptide binding agents, synthetic antibodies or synbodies, were examined with respect to the capture efficiency and specific binding ability to norovirus. Norovirus, although generally not a deadly pathogen, is the most common cause of acute gastroenteritis and outbreaks present a large social and financial burden to the healthcare and food service industries. With Dr. Diehnelt's laboratory group, a platform has been developed that enables us to rapidly construct peptide-based affinity ligands that can be characterized for binding to norovirus. The design needed to display clear results, be simple to operate, and be inexpensive to produce and use. Four synbodies, originally engineered with a specificity to the GII.4 Minerva genotype were tested with different virus strains varying in similarity to the GII.4 Minerva between 43% and 95.4%. Initial assays utilized norovirus-like particles to qualitatively compare the capture efficiency of the different synbodies without utilizing limited resources. To quantify the amount of actual virus captured by the synbodies, western blots with RT-PCR and RT-qPCR were utilized. The results indicated the synbodies were able to enrich the dilute solutions of the different noroviruses utilizing a magnetic bead pull-down assay. The capture efficiencies of the synbodies were comparable to currently utilized binding agents such as aptamers and porcine gastric mucine magnetic beads. This thesis presents data collected over nearly two years of research at the Center for Innovations in Medicine at the Biodesign Institute located at Arizona State University.
ContributorsSlosky, Rachael Marie (Author) / Diehnelt, Chris (Thesis director) / Stafford, Phillip (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135282-Thumbnail Image.png
Description
Telestroke networks reduce disparities in acute stroke care between metropolitan primary stroke centers and remote hospitals. Current technologies used to conduct remote patient assessments have very high start-up costs, yet they cannot consistently establish quality connection in a timely manner. Smartphgones can be used for high quality video teleconferencing (HQ-VTC).

Telestroke networks reduce disparities in acute stroke care between metropolitan primary stroke centers and remote hospitals. Current technologies used to conduct remote patient assessments have very high start-up costs, yet they cannot consistently establish quality connection in a timely manner. Smartphgones can be used for high quality video teleconferencing (HQ-VTC). They are relatively inexpensive and widley used among healthcare providers. We aimed to study the reliability of HQ-VTC using smartphones for conducting the NIHSS. Two vascular neurologists (VNs) assessed 83 stroke patients with the NIHSS. The remote VN assessed patients using videoconferencing on a smartphone with the assistance of a bedside medical aide. The bedside VN rated patients ontemporaneously. Each VN was blinded to the other's NIHSS scores. We tested the inter-method agreement and physician satisfaction with the device. We demonstrated high total NIHSS score correlation between the methods (r=0.941, p<0.001). The mean total NIHSS scores for bedside and remote assessments were 7.3 plus or minus 7.9 and 6.7 plus or minus 7.6 with ranges of 0-30 and 0-37, respectively. Seven NIHSS categories had significantly high agreement beyond chance: LOC-questions, LOC-commands, visual fields, motor left arm, motor right arm, motor left leg, motor right leg; seven categories had moderate agreement: LOC-consciousness, best gaze, facial palsy, sensory, best language, dysarthria, extinction/inattention; one category had poor agreement: ataxia. There was high physician satisfaction with the device. The VNs rated 96% of the assessments as good or very good for "image quality," "sound quality," "ease of use," and "ability to assess subject using NIHSS," and 84% of the assesssments as good or very good for "reception in hospital." The smartphones with HQ-VTC is reliable, easy to use, and affordable for telestroke NIHSS administration. This device has high physician satisfaction. With the variety of smartphones and professional medical applications available today, the telestroke practitioner has all the tools necessary for fast clinical decision-makingby accessing electronic medial records, viewing images, and tracking patient vitals.
ContributorsVegunta, Sravanthi (Author) / Demaerschalk, Bart (Thesis director) / Santello, Marco (Committee member) / Hurlbut, Ben (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
134461-Thumbnail Image.png
Description
The purpose of this paper was to systematically review current literature regarding the effect of hand splints on aesthetic outcomes for individuals with acquired hand deformities. Hand splints vary in form and function, and are used to maintain or ameliorate hand function and aesthetics. A literature search was performed on

The purpose of this paper was to systematically review current literature regarding the effect of hand splints on aesthetic outcomes for individuals with acquired hand deformities. Hand splints vary in form and function, and are used to maintain or ameliorate hand function and aesthetics. A literature search was performed on peer-reviewed publications that used splinting as an intervention for conservative hand improvement. Evidence from ten randomized clinical trials (published from 2003 to 2015) was evaluated for aesthetic improvement among a total of 659 subjects. Cosmetic outcomes were analyzed by a change in angle measurements, such as extensor lag, ulnar deviation, and passive and active range of motion. Of these ten studies, five focused on hand deformities caused by neurological impairment, while the other five measured those with musculoskeletal complications. Only two of the ten studies concluded that splinting could aesthetically improve the hands, and only one of these reporting statistical significance in its data. The data was not only limited in quantity, but was presented in heterogeneous formats. There was an extensive variation in measured outcomes, intervention protocols, follow-up times, and many other aspects of the studies; this dissimilarity led to difficulty in performing a systematic assessment. The majority of evidence concludes that splinting does not improve the appearance of deformities, however none directly investigated this measure. Therefore, further RCTs that include measurements of cosmetic traits are necessary to better quantify the effect of splinting for management of hand deformities. This review was the first of its kind to evaluate the correction of hand deformities using splints as an intervention.
ContributorsVale, Nicholas Marshall (Author) / Santello, Marco (Thesis director) / Skiba, Jeffry (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor, Contributor) / School of Biological and Health Systems Engineering (Contributor)
Created2017-05
190775-Thumbnail Image.png
Description
Although previous studies have elucidated the role of position feedback in the regulation of movement, the specific contribution of Golgi tendon organs (GTO) in force feedback, especially in stabilizing voluntary limb movements, has remained theoretical due to limitations in experimental techniques. This study aims to establish force feedback regulation mediated

Although previous studies have elucidated the role of position feedback in the regulation of movement, the specific contribution of Golgi tendon organs (GTO) in force feedback, especially in stabilizing voluntary limb movements, has remained theoretical due to limitations in experimental techniques. This study aims to establish force feedback regulation mediated by GTO afferent signals in two phases. The first phase of this study consisted of simulations using a neuromusculoskeletal model of the monoarticular elbow flexor (MEF) muscle group, assess the impact of force feedback in maintaining steady state interaction forces against variable environmental stiffness. Three models were trained to accurately reach an interaction force of 40N, 50N and 60N respectively, using a fixed stiffness level. Next, the environment stiffness was switched between untrained levels for open loop (OL) and closed loop (CL) variants of the same model. Results showed that compared to OL, CL showed decreased force deviations by 10.43%, 12.11% and 13.02% for each of the models. Most importantly, it is also observed that in the absence of force feedback, environment stiffness is found to have an effect on the interaction force. In the second phase, human subjects were engaged in experiments utilizing an instrumented elbow exoskeleton that applied loads to the MEF muscle group, closely mimicking the simulation conditions. The experiments consisted of reference, blind and catch trial types, and 3 stiffness levels. Subjects were first trained to reach for a predetermined target force. During catch trials, stiffness levels were randomized between reaches. Responses obtained from these experiments showed that subjects were able to regulate forces with no significant effects of trial type or stiffness level. Since experimental results align closely with that of closed loop model simulations, the presence of force feedback mechanisms mediated by GTO within the human neuromuscular system is established. This study not only unveils the critical involvement of GTO in force feedback but also emphasizes the importance of understanding these mechanisms for developing advanced neuroprosthetics and rehabilitation strategies, shedding light on the intricate interplay between sensory inputs and motor responses in human proprioception.
ContributorsAbishek, Kevin (Author) / Lee, Hyunglae (Thesis advisor) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2023
189324-Thumbnail Image.png
Description
A current thrust in neurorehabilitation research involves exogenous neuromodulation of peripheral nerves to enhance neuroplasticity and maximize recovery of function. This dissertation presents the results of four experiments aimed at assessing the effects of trigeminal nerve stimulation (TNS) and occipital nerve stimulation (ONS) on motor learning, which was behaviorally characterized

A current thrust in neurorehabilitation research involves exogenous neuromodulation of peripheral nerves to enhance neuroplasticity and maximize recovery of function. This dissertation presents the results of four experiments aimed at assessing the effects of trigeminal nerve stimulation (TNS) and occipital nerve stimulation (ONS) on motor learning, which was behaviorally characterized using an upper extremity visuomotor adaptation paradigm. In Aim 1a, the effects of offline TNS using clinically tested frequencies (120 and 60 Hz) were characterized. Sixty-three participants (22.75±4.6 y/o), performed a visuomotor rotation task and received TNS before encountering rotation of hand visual feedback. In Aim 1b, TNS at 3 kHz, which has been shown to be more tolerable at higher current intensities, was evaluated in 42 additional subjects (23.4±4.6 y/o). Results indicated that 3 kHz stimulation accelerated learning while 60 Hz stimulation slowed learning, suggesting a frequency-dependent effect on learning. In Aim 2, the effect of online TNS using 120 and 60 Hz were characterized to determine if this protocol would deliver better outcomes. Sixty-three participants (23.2±3.9 y/o) received either TNS or sham concurrently with perturbed visual feedback. Results showed no significant differences among groups. However, a cross-study comparison of results obtained with 60 Hz offline TNS showed a statistically significant improvement in learning rates with online stimulation relative to offline, suggesting a timing-dependent effect on learning. In Aim 3, TNS and ONS were compared using the best protocol from previous aims (offline 3 kHz). Additionally, concurrent stimulation of both nerves was explored to look for potential synergistic effects. Eighty-four participants (22.9±3.2 y/o) were assigned to one of four groups: TNS, ONS, TNS+ONS, and sham. Visual inspection of learning curves revealed that the ONS group demonstrated the fastest learning among groups. However, statistical analyses did not confirm this observation. In addition, the TNS+ONS group appeared to learn faster than the sham and TNS groups but slower than the ONS only group, suggesting no synergistic effects using this protocol, as initially hypothesized. The results provide new information on the potential use of TNS and ONS in neurorehabilitation and performance enhancement in the motor domain.
ContributorsArias, Diego (Author) / Buneo, Christopher (Thesis advisor) / Schaefer, Sydney (Committee member) / Helms-Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2023
187872-Thumbnail Image.png
Description
Multisensory integration is the process by which information from different sensory modalities is integrated by the nervous system. This process is important not only from a basic science perspective but also for translational reasons, e.g., for the development of closed-loop neural prosthetic systems. A mixed virtual reality platform was developed

Multisensory integration is the process by which information from different sensory modalities is integrated by the nervous system. This process is important not only from a basic science perspective but also for translational reasons, e.g., for the development of closed-loop neural prosthetic systems. A mixed virtual reality platform was developed to study the neural mechanisms of multisensory integration for the upper limb during motor planning. The platform allows for selection of different arms and manipulation of the locations of physical and virtual target cues in the environment. The system was tested with two non-human primates (NHP) trained to reach to multiple virtual targets. Arm kinematic data as well as neural spiking data from primary motor (M1) and dorsal premotor cortex (PMd) were collected. The task involved manipulating visual information about initial arm position by rendering the virtual avatar arm in either its actual position (veridical (V) condition) or in a different shifted (e.g., small vs large shifts) position (perturbed (P) condition) prior to movement. Tactile feedback was modulated in blocks by placing or removing the physical start cue on the table (tactile (T), and no-tactile (NT) conditions, respectively). Behaviorally, errors in initial movement direction were larger when the physical start cue was absent. Slightly larger directional errors were found in the P condition compared to the V condition for some movement directions. Both effects were consistent with the idea that erroneous or reduced information about initial hand location led to movement direction-dependent reach planning errors. Neural correlates of these behavioral effects were probed using population decoding techniques. For small shifts in the visual position of the arm, no differences in decoding accuracy between the T and NT conditions were observed in either M1 or PMd. However, for larger visual shifts, decoding accuracy decreased in the NT condition, but only in PMd. Thus, activity in PMd, but not M1, may reflect the uncertainty in reach planning that results when sensory cues regarding initial hand position are erroneous or absent.
ContributorsPhataraphruk, Preyaporn Kris (Author) / Buneo, Christopher A (Thesis advisor) / Zhou, Yi (Committee member) / Helms Tillery, Steve (Committee member) / Greger, Bradley (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2023