Matching Items (212)
148201-Thumbnail Image.png
Description

Fluoroquinolone antibiotics have been known to cause severe, multisystem adverse side effects, termed fluoroquinolone toxicity (FQT). This toxicity syndrome can present with adverse effects that vary from individual to individual, including effects on the musculoskeletal and nervous systems, among others. The mechanism behind FQT in mammals is not known, although

Fluoroquinolone antibiotics have been known to cause severe, multisystem adverse side effects, termed fluoroquinolone toxicity (FQT). This toxicity syndrome can present with adverse effects that vary from individual to individual, including effects on the musculoskeletal and nervous systems, among others. The mechanism behind FQT in mammals is not known, although various possibilities have been investigated. Among the hypothesized FQT mechanisms, those that could potentially explain multisystem toxicity include off-target mammalian topoisomerase interactions, increased production of reactive oxygen species, oxidative stress, and oxidative damage, as well as metal chelating properties of FQs. This review presents relevant information on fluoroquinolone antibiotics and FQT and explores the mechanisms that have been proposed. A fluoroquinolone-induced increase in reactive oxygen species and subsequent oxidative stress and damage presents the strongest evidence to explain this multisystem toxicity syndrome. Understanding the mechanism of FQT in mammals is important to aid in the prevention and treatment of this condition.

ContributorsHall, Brooke Ashlyn (Author) / Redding, Kevin (Thesis director) / Wideman, Jeremy (Committee member) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137203-Thumbnail Image.png
Description
This project uses the tintype process to create contemporary portraits. The tintype is a nineteenth century photographic process that creates a direct positive on a sheet of metal. The images were created using the same process from the 1800s, as well as a more contemporary method. The natural imperfections caused

This project uses the tintype process to create contemporary portraits. The tintype is a nineteenth century photographic process that creates a direct positive on a sheet of metal. The images were created using the same process from the 1800s, as well as a more contemporary method. The natural imperfections caused by both processes were used to help examine the intimacy and emotion present in the portraits.
ContributorsRichey, Jordyn Elizabeth (Author) / Danh, Binh (Thesis director) / Schneider, Betsy (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Art (Contributor)
Created2014-05
152247-Thumbnail Image.png
Description
Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR sensor paradigm for the purpose of small molecule detection. The detection limits of two orthogonal components of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the target molecule mass limitation of conventional SPR measurement. A simple device for high-speed microfluidic delivery of liquid samples to a sensor surface is presented to address the temporal limitations of conventional SPR measurement. The time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement. Charge-based detection of small molecules is demonstrated by plasmonic-based electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a dextran-modified sensor surface. The SPR response to an applied ac potential is a function of the surface charge density. This optical signal is comprised of a dc and an ac component, and is measured with high spatial resolution. The amplitude and phase of local surface impedance is provided by the ac component. The phase signal of the small molecules is a function of their charge status, which is manipulated by the pH of a solution. This technique is used to detect and distinguish small molecules based on their charge status, thereby circumventing the mass limitation (~100 Da) of conventional SPR measurement.
ContributorsMacGriff, Christopher Assiff (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / LaBaer, Joshua (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2013
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
150705-Thumbnail Image.png
Description
Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic

Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic expression system. Vectors carrying this sequence in a monocistronic reporter plasmid produce >1,000-fold more protein than equivalent vectors with conventional vaccinia promoters. Initial mechanistic studies indicate that high protein expression results from dual activity that impacts both transcription and translation. I suggest that this motif represents a powerful new tool in vaccinia-based protein expression and vaccine development technology.
ContributorsFlores, Julia Anne (Author) / Chaput, John C (Thesis advisor) / Jacobs, Bertram (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2012
151170-Thumbnail Image.png
Description
Cancer claims hundreds of thousands of lives every year in US alone. Finding ways for early detection of cancer onset is crucial for better management and treatment of cancer. Thus, biomarkers especially protein biomarkers, being the functional units which reflect dynamic physiological changes, need to be discovered. Though important, there

Cancer claims hundreds of thousands of lives every year in US alone. Finding ways for early detection of cancer onset is crucial for better management and treatment of cancer. Thus, biomarkers especially protein biomarkers, being the functional units which reflect dynamic physiological changes, need to be discovered. Though important, there are only a few approved protein cancer biomarkers till date. To accelerate this process, fast, comprehensive and affordable assays are required which can be applied to large population studies. For this, these assays should be able to comprehensively characterize and explore the molecular diversity of nominally "single" proteins across populations. This information is usually unavailable with commonly used immunoassays such as ELISA (enzyme linked immunosorbent assay) which either ignore protein microheterogeneity, or are confounded by it. To this end, mass spectrometric immuno assays (MSIA) for three different human plasma proteins have been developed. These proteins viz. IGF-1, hemopexin and tetranectin have been found in reported literature to show correlations with many diseases along with several carcinomas. Developed assays were used to extract entire proteins from plasma samples and subsequently analyzed on mass spectrometric platforms. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric techniques where used due to their availability and suitability for the analysis. This resulted in visibility of different structural forms of these proteins showing their structural micro-heterogeneity which is invisible to commonly used immunoassays. These assays are fast, comprehensive and can be applied in large sample studies to analyze proteins for biomarker discovery.
ContributorsRai, Samita (Author) / Nelson, Randall (Thesis advisor) / Hayes, Mark (Thesis advisor) / Borges, Chad (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2012
136540-Thumbnail Image.png
Description
Since the early 1990's, researchers have been looking at intersections between education and music. After a highly popular study correlating listening to Mozart to temporary increases in spatial reasoning, many other researchers tried to find a link between different musical genres and learning outcomes. Using three musical treatments (Pop, classical,

Since the early 1990's, researchers have been looking at intersections between education and music. After a highly popular study correlating listening to Mozart to temporary increases in spatial reasoning, many other researchers tried to find a link between different musical genres and learning outcomes. Using three musical treatments (Pop, classical, silence), this study had subjects (N=34) complete a reading-based task whereupon they were tested on their comprehension. Using a suite of sensors, data was collected to analyze the participants' emotions and affect while they read from an educational psychology textbook. The present study has two major focuses: They detail whether (1) changes in musical condition affect learning outcomes and (2) whether changes in musical condition affect emotional outcomes. The popular conception that listening to classical music makes you smarter was proven false long ago, but there may actually be some merit to using music to assist one in studying. While there were no significant changes in test scores depending on musical condition; frustration levels were significantly lower for those who listened to classical instead of pop music.
ContributorsPaley, Benjamin Henry (Author) / Atkinson, Robert (Thesis director) / Feisst, Sabine (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2015-05
136414-Thumbnail Image.png
Description
This thesis was an analysis of items in the Late Adolescent Home Observation for Measure of the Environment (LA HOME) after the first wave of N = 138 interviews. The purpose of this project was to learn how to utilize a statistical software such as SPSS to analyze items and

This thesis was an analysis of items in the Late Adolescent Home Observation for Measure of the Environment (LA HOME) after the first wave of N = 138 interviews. The purpose of this project was to learn how to utilize a statistical software such as SPSS to analyze items and interpret results. Frequency analysis, inter-rater reliability (IRR), correlation analysis, internal consistency using Cronbach's alpha, and feedback from research assistants were considered when deciding which items should be eliminated from the measure. After running these analyses, ten items were suggested for deletion including: clean, adolescent's room allows for privacy, reference materials, news, family encourages adolescent to think independently, community service, parent knows where adolescent spends time, weekly household responsibilities, school/career planning, and dentist. Future interviews generating a larger sample size as well as discussions and subsequent revisions to the manual will clarify additional items that may be eliminated from the final version of the instrument.
ContributorsMiller, Ava Kathryn (Author) / Bradley, Robert (Thesis director) / Spinrad, Tracy (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2015-05
136421-Thumbnail Image.png
Description
Bacteria play a vital role in the world ecosystem, more importantly human health and disease. The capability to differentiate and identify these microorganisms serves as an important research objective. In past years, separations-based approaches have served as a way to observe and identify bacteria based on their characteristics. Gradient insulator

Bacteria play a vital role in the world ecosystem, more importantly human health and disease. The capability to differentiate and identify these microorganisms serves as an important research objective. In past years, separations-based approaches have served as a way to observe and identify bacteria based on their characteristics. Gradient insulator dielectrophoresis (g-iDEP) provides benefits in identifying serotypes of a single species with precise separation. Separation of Staphylococcus epidermidis in a single g-iDEP microchannel is conducted exploiting their electrophoretic and electrokinetic properties. The cells were captured and concentrated at gates with interacting forces within the microchannel to clearly distinguish between the two strains. These results provide support for g-iDEP serving as a separating method and, furthermore, future clinical applications.
ContributorsDavis, Paige Elizabeth (Author) / Hayes, Mark (Thesis director) / Borges, Chad (Committee member) / Jones, Paul (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2015-05
136323-Thumbnail Image.png
Description
In the United States, many new cases of type I diabetes appear among youth. Upon diagnosis, many patients experience psychosocial issues in addition to physical issues, including depression, anxiety, and poor self-esteem. Diabetes educators have found that it is important to form interpersonal connections and trust with their adolescent patients.

In the United States, many new cases of type I diabetes appear among youth. Upon diagnosis, many patients experience psychosocial issues in addition to physical issues, including depression, anxiety, and poor self-esteem. Diabetes educators have found that it is important to form interpersonal connections and trust with their adolescent patients. One tool that may be particularly useful for diabetes educators to implement is art therapy, which combines creativity and problem solving in a practical manner. Art therapy may be particularly helpful for individuals with type 1 diabetes because of the great cognitive and emotional changes, which occur during adolescence. In order for caretakers and educators to implement tenants of art therapy, it is helpful to have a medium, such as an art journal, which provides a foundation on which to process the emotions and thoughts the adolescent is experiencing as they process diabetes and their feelings throughout diagnosis. Keywords: art therapy, type I diabetes
ContributorsFowle, Mikaelah Jenee (Author) / Bodman, Denise (Thesis director) / Rogers, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2015-05