Matching Items (28)
150204-Thumbnail Image.png
Description
Programmable metallization cell (PMC) technology is based on an electrochemical phenomenon in which a metallic electrodeposit can be grown or dissolved between two electrodes depending on the voltage applied between them. Devices based on this phenomenon exhibit a unique, self-healing property, as a broken metallic structure can be healed by

Programmable metallization cell (PMC) technology is based on an electrochemical phenomenon in which a metallic electrodeposit can be grown or dissolved between two electrodes depending on the voltage applied between them. Devices based on this phenomenon exhibit a unique, self-healing property, as a broken metallic structure can be healed by applying an appropriate voltage between the two broken ends. This work explores methods of fabricating interconnects and switches based on PMC technology on flexible substrates. The objective was the evaluation of the feasibility of using this technology in flexible electronics applications in which reliability is a primary concern. The re-healable property of the interconnect is characterized for the silver doped germanium selenide (Ag-Ge-Se) solid electrolyte system. This property was evaluated by measuring the resistances of the healed interconnect structures and comparing these to the resistances of the unbroken structures. The reliability of the interconnects in both unbroken and healed states is studied by investigating the resistances of the structures to DC voltages, AC voltages and different temperatures as a function of time. This work also explores replacing silver with copper for these interconnects to enhance their reliability. A model for PMC-based switches on flexible substrates is proposed and compared to the observed device behavior with the objective of developing a formal design methodology for these devices. The switches were subjected to voltage sweeps and their resistance was investigated as a function of sweep voltage. The resistance of the switches as a function of voltage pulse magnitude when placed in series with a resistance was also investigated. A model was then developed to explain the behavior of these devices. All observations were based on statistical measurements to account for random errors. The results of this work demonstrate that solid electrolyte based interconnects display self-healing capability, which depends on the applied healing voltage and the current limit. However, they fail at lower current densities than metal interconnects due to an ion-drift induced failure mechanism. The results on the PMC based switches demonstrate that a model comprising a Schottky diode in parallel with a variable resistor predicts the behavior of the device.
ContributorsBaliga, Sunil Ravindranath (Author) / Kozicki, Michael N (Thesis advisor) / Schroder, Dieter K. (Committee member) / Chae, Junseok (Committee member) / Alford, Terry L. (Committee member) / Arizona State University (Publisher)
Created2011
152288-Thumbnail Image.png
Description
Chalcogenide glass (ChG) materials have gained wide attention because of their applications in conductive bridge random access memory (CBRAM), phase change memories (PC-RAM), optical rewritable disks (CD-RW and DVD-RW), microelectromechanical systems (MEMS), microfluidics, and optical communications. One of the significant properties of ChG materials is the change in the resistivity

Chalcogenide glass (ChG) materials have gained wide attention because of their applications in conductive bridge random access memory (CBRAM), phase change memories (PC-RAM), optical rewritable disks (CD-RW and DVD-RW), microelectromechanical systems (MEMS), microfluidics, and optical communications. One of the significant properties of ChG materials is the change in the resistivity of the material when a metal such as Ag or Cu is added to it by diffusion. This study demonstrates the potential radiation-sensing capabilities of two metal/chalcogenide glass device configurations. Lateral and vertical device configurations sense the radiation-induced migration of Ag+ ions in germanium selenide glasses via changes in electrical resistance between electrodes on the ChG. Before irradiation, these devices exhibit a high-resistance `OFF-state' (in the order of 10E12) but following irradiation, with either 60-Co gamma-rays or UV light, their resistance drops to a low-resistance `ON-state' (around 10E3). Lateral devices have exhibited cyclical recovery with room temperature annealing of the Ag doped ChG, which suggests potential uses in reusable radiation sensor applications. The feasibility of producing inexpensive flexible radiation sensors has been demonstrated by studying the effects of mechanical strain and temperature stress on sensors formed on flexible polymer substrate. The mechanisms of radiation-induced Ag/Ag+ transport and reactions in ChG have been modeled using a finite element device simulator, ATLAS. The essential reactions captured by the simulator are radiation-induced carrier generation, combined with reduction/oxidation for Ag species in the chalcogenide film. Metal-doped ChGs are solid electrolytes that have both ionic and electronic conductivity. The ChG based Programmable Metallization Cell (PMC) is a technology platform that offers electric field dependent resistance switching mechanisms by formation and dissolution of nano sized conductive filaments in a ChG solid electrolyte between oxidizable and inert electrodes. This study identifies silver anode agglomeration in PMC devices following large radiation dose exposure and considers device failure mechanisms via electrical and material characterization. The results demonstrate that by changing device structural parameters, silver agglomeration in PMC devices can be suppressed and reliable resistance switching may be maintained for extremely high doses ranging from 4 Mrad(GeSe) to more than 10 Mrad (ChG).
ContributorsDandamudi, Pradeep (Author) / Kozicki, Michael N (Thesis advisor) / Barnaby, Hugh J (Committee member) / Holbert, Keith E. (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
Description
Advances in software and applications continue to demand advances in memory. The ideal memory would be non-volatile and have maximal capacity, speed, retention time, endurance, and radiation hardness while also having minimal physical size, energy usage, and cost. The programmable metallization cell (PMC) is an emerging memory technology that is

Advances in software and applications continue to demand advances in memory. The ideal memory would be non-volatile and have maximal capacity, speed, retention time, endurance, and radiation hardness while also having minimal physical size, energy usage, and cost. The programmable metallization cell (PMC) is an emerging memory technology that is likely to surpass flash memory in all the listed ideal memory characteristics. A comprehensive physics-based model is needed to fully understand PMC operation and aid in design optimization. With the intent of advancing the PMC modeling effort, this thesis presents two simulation models for the PMC. The first model is a finite element model based on Silvaco Atlas finite element analysis software. Limitations of the software are identified that make this model inconsistent with the operating mechanism of the PMC. The second model is a physics-based numerical model developed for the PMC. This model is successful in matching data measured from a chalcogenide glass PMC designed and manufactured at ASU. Matched operating characteristics observable in the current and resistance vs. voltage data include the OFF/ON resistances and write/erase and electrodeposition voltage thresholds. Multilevel programming is also explained and demonstrated with the numerical model. The numerical model has already proven useful by revealing some information presented about the operation and characteristics of the PMC.
ContributorsOleksy, David Ryan (Author) / Barnaby, Hugh J (Thesis advisor) / Kozicki, Michael N (Committee member) / Edwards, Arthur H (Committee member) / Arizona State University (Publisher)
Created2013
151299-Thumbnail Image.png
Description
Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and

Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and independent Gaussian beam expansion, referred to as the frames. To simulate a reflector antenna in hundreds to thousands of wavelength, it requires 1E7 - 1E9 independent Gaussian beams. To this end, high performance parallel computing is implemented, based on Message Passing Interface (MPI). The second part of the dissertation includes the plane wave scattering from a target consisting of doubly periodic array of sharp conducting circular cones by the magnetic field integral equation (MFIE) via Coiflet based Galerkin's procedure in conjunction with the Floquet theorem. Owing to the orthogonally, compact support, continuity and smoothness of the Coiflets, well-conditioned impedance matrices are obtained. Majority of the matrix entries are obtained in the spectral domain by one-point quadrature with high precision. For the oscillatory entries, spatial domain computation is applied, bypassing the slow convergence of the spectral summation of the non-damping propagating modes. The simulation results are compared with the solutions from an RWG-MLFMA based commercial software, FEKO, and excellent agreement is observed.
ContributorsWang, Le, 1975- (Author) / Pan, George (Thesis advisor) / Yu, Hongyu (Committee member) / Aberle, James T., 1961- (Committee member) / Diaz, Rodolfo (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2012
151381-Thumbnail Image.png
Description
The dissolution of metal layers such as silver into chalcogenide glass layers such as germanium selenide changes the resistivity of the metal and chalcogenide films by a great extent. It is known that the incorporation of the metal can be achieved by ultra violet light exposure or thermal processes. In

The dissolution of metal layers such as silver into chalcogenide glass layers such as germanium selenide changes the resistivity of the metal and chalcogenide films by a great extent. It is known that the incorporation of the metal can be achieved by ultra violet light exposure or thermal processes. In this work, the use of metal dissolution by exposure to gamma radiation has been explored for radiation sensor applications. Test structures were designed and a process flow was developed for prototype sensor fabrication. The test structures were designed such that sensitivity to radiation could be studied. The focus is on the effect of gamma rays as well as ultra violet light on silver dissolution in germanium selenide (Ge30Se70) chalcogenide glass. Ultra violet radiation testing was used prior to gamma exposure to assess the basic mechanism. The test structures were electrically characterized prior to and post irradiation to assess resistance change due to metal dissolution. A change in resistance was observed post irradiation and was found to be dependent on the radiation dose. The structures were also characterized using atomic force microscopy and roughness measurements were made prior to and post irradiation. A change in roughness of the silver films on Ge30Se70 was observed following exposure. This indicated the loss of continuity of the film which causes the increase in silver film resistance following irradiation. Recovery of initial resistance in the structures was also observed after the radiation stress was removed. This recovery was explained with photo-stimulated deposition of silver from the chalcogenide at room temperature confirmed with the re-appearance of silver dendrites on the chalcogenide surface. The results demonstrate that it is possible to use the metal dissolution effect in radiation sensing applications.
ContributorsChandran, Ankitha (Author) / Kozicki, Michael N (Thesis advisor) / Holbert, Keith E. (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2012
151102-Thumbnail Image.png
Description
The field of flexible displays and electronics gained a big momentum within the recent years due to their ruggedness, thinness, and flexibility as well as low cost large area manufacturability. Amorphous silicon has been the dominant material used in the thin film transistor industry which could only utilize it as

The field of flexible displays and electronics gained a big momentum within the recent years due to their ruggedness, thinness, and flexibility as well as low cost large area manufacturability. Amorphous silicon has been the dominant material used in the thin film transistor industry which could only utilize it as N type thin film transistors (TFT). Amorphous silicon is an unstable material for low temperature manufacturing process and having only one kind of transistor means high power consumption for circuit operations. This thesis covers the three major researches done on flexible TFTs and flexible electronic circuits. First the characterization of both amorphous silicon TFTs and newly emerging mixed oxide TFTs were performed and the stability of these two materials is compared. During the research, both TFTs were stress tested under various biasing conditions and the threshold voltage was extracted to observe the shift in the threshold which shows the degradation of the material. Secondly, the design of the first flexible CMOS TFTs and CMOS gates were covered. The circuits were built using both inorganic and organic components (for nMOS and pMOS transistors respectively) and functionality tests were performed on basic gates like inverter, NAND and NOR gates and the working results are documented. Thirdly, a novel large area sensor structure is demonstrated under the Electronic Textile project section. This project is based on the concept that all the flexible electronics are flexible in only one direction and can not be used for conforming irregular shaped objects or create an electronic cloth for various applications like display or sensing. A laser detector sensor array is designed for proof of concept and is laid in strips that can be cut after manufacturing and weaved to each other to create a real flexible electronic textile. The circuit designed uses a unique architecture that pushes the data in a single line and reads the data from the same line and compares the signal to the original state to determine a sensor excitation. This architecture enables 2 dimensional addressing through an external controller while eliminating the need for 2 dimensional active matrix style electrical connections between the fibers.
ContributorsKaftanoglu, Korhan (Author) / Allee, David R. (Thesis advisor) / Kozicki, Michael N (Committee member) / Holbert, Keith E. (Committee member) / Kaminski, Jann P (Committee member) / Arizona State University (Publisher)
Created2012
137020-Thumbnail Image.png
Description
In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this

In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this ill-posed problem. Two such algorithms were examined: alternating projections, utilizing iterative Fourier transforms with manipulations performed in each domain on every iteration, and phase lifting, converting the problem to that of trace minimization, allowing for the use of convex optimization algorithms to perform the signal recovery. These recovery algorithms were compared on a basis of robustness as a function of signal-to-noise ratio. A second problem examined was that of unimodular polyphase radar waveform design. Under a finite signal energy constraint, the maximal energy return of a scene operator is obtained by transmitting the eigenvector of the scene Gramian associated with the largest eigenvalue. It is shown that if instead the problem is considered under a power constraint, a unimodular signal can be constructed starting from such an eigenvector that will have a greater return.
ContributorsJones, Scott Robert (Author) / Cochran, Douglas (Thesis director) / Diaz, Rodolfo (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
149604-Thumbnail Image.png
Description
Programmable Metallization Cell (PMC) is a resistance-switching device based on migration of nanoscale quantities of cations in a solid electrolyte and formation of a conducting electrodeposit by the reductions of these cations. This dissertation presents electrical characterization results on Cu-SiO2 based PMC devices, which due to the na- ture of

Programmable Metallization Cell (PMC) is a resistance-switching device based on migration of nanoscale quantities of cations in a solid electrolyte and formation of a conducting electrodeposit by the reductions of these cations. This dissertation presents electrical characterization results on Cu-SiO2 based PMC devices, which due to the na- ture of materials can be easily integrated into the current Complimentary metal oxide semiconductor (CMOS) process line. Device structures representing individual mem- ory cells based on W bottom electrode and n-type Si bottom electrode were fabricated for characterization. For the W bottom electrode based devices, switching was ob- served for voltages in the range of 500mV and current value as low as 100 nA showing the electrochemical nature and low power potential. The ON state showed a direct de- pendence on the programming current, showing the possibility of multi-bit storage in a single cell. Room temperature retention was demonstrated in excess of 105 seconds and endurance to approximately 107 cycles. Switching was observed for microsecond duration 3 V amplitude pulses. Material characterization results from Raman, X-ray diffraction, Rutherford backscattering and Secondary-ion mass spectroscopy analysis shows the influence of processing conditions on the Cu concentration within the film and also the presence of Cu as free atoms. The results seemed to indicate stress-induced void formation in the SiO2 matrix as the driving mechanism for Cu diffusion into the SiO2 film. Cu/SiO2
Si based PMC devices were characterized and were shown to have inherent isolation characteristics, proving the feasibility of such a structure for a passive array. The inherent isolation property simplifies fabrication by avoiding the need for a separate diode element in an array. The isolation characteristics were studied mainly in terms of the leakage current. The nature of the diode interface was further studied by extracting a barrier potential which shows it can be approximated to a Cu-nSi metal semiconductor Schottky diode.
ContributorsPuthenthermadam, Sarath (Author) / Kozicki, Michael N (Thesis advisor) / Diaz, Rodolfo (Committee member) / Schroder, Dieter K. (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2011
149321-Thumbnail Image.png
Description
Electronic devices are gaining an increasing market share in the medical field. Medical devices are becoming more sophisticated, and encompassing more applications. Unlike consumer electronics, medical devices have far more limitations when it comes to area, power and most importantly reliability. The medical devices industry has recently seen the advantages

Electronic devices are gaining an increasing market share in the medical field. Medical devices are becoming more sophisticated, and encompassing more applications. Unlike consumer electronics, medical devices have far more limitations when it comes to area, power and most importantly reliability. The medical devices industry has recently seen the advantages of using Flash memory instead of Read Only Memory (ROM) for firmware storage, and in some cases to replace Electrically Programmable Read Only Memories (EEPROMs) in medical devices for frequent data storage. There are direct advantages to using Flash memory instead of Read Only Memory, most importantly the fact that firmware can be rewritten along the development cycle and in the field. However, Flash technology requires high voltage circuitry that makes it harder to integrate into low power devices. There have been a lot of advances in Non-Volatile Memory (NVM) technologies, and many Flash rivals are starting to gain attention. The purpose of this thesis is to evaluate these new technologies against Flash to determine the feasibility as well as the advantages of each technology. The focus is on embedded memory in a medical device micro-controller and application specific integrated circuits (ASIC). A behavioral model of a Programmable Metallization Cell (PMC) was used to simulate the behavior and determine the advantages of using PMC technology versus flash. When compared to flash test data, PMC based embedded memory showed a reduction in power consumption by many orders of magnitude. Analysis showed that an approximated 20% device longevity increase can be achieved by using embedded PMC technology.
ContributorsHag, Eslam E (Author) / Kozicki, Michael N (Thesis advisor) / Schroder, Dieter K. (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2010
156824-Thumbnail Image.png
Description
Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via

Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via recombination of photo-generated charge carriers within advanced solar cell architectures.

As these two aspects of the solar cell framework improve, the need for a thorough analysis of their respective contribution under varying operation conditions has emerged along with challenges related to the lack of sensitivity of available characterization techniques. The main objective of my thesis work has been to establish a deep understanding of both “intrinsic” and “extrinsic” recombination processes that govern performance in high-quality silicon absorbers. By studying each recombination mechanism as a function of illumination and temperature, I strive to identify the lifetime limiting defects and propose a path to engineer the ultimate silicon solar cell.

This dissertation presents a detailed description of the experimental procedure required to deconvolute surface recombination contributions from bulk recombination contributions when performing lifetime spectroscopy analysis. This work proves that temperature- and injection-dependent lifetime spectroscopy (TIDLS) sensitivity can be extended to impurities concentrations down to 109 cm-3, orders of magnitude below any other characterization technique available today. A new method for the analysis of TIDLS data denominated Defect Parameters Contour Mapping (DPCM) is presented with the aim of providing a visual and intuitive tool to identify the lifetime limiting impurities in silicon material. Surface recombination velocity results are modelled by applying appropriate approaches from literature to our experimentally evaluated data, demonstrating for the first time their capability to interpret temperature-dependent data. In this way, several new results are obtained which solve long disputed aspects of surface passivation mechanisms. Finally, we experimentally evaluate the temperature-dependence of Auger lifetime and its impact on a theoretical intrinsically limited solar cell. These results decisively point to the need for a new Auger lifetime parameterization accounting for its temperature-dependence, which would in turn help understand the ultimate theoretical efficiency limit for a solar cell under real operation conditions.
ContributorsBernardini, Simone (Author) / Bertoni, Mariana I (Thesis advisor) / Coletti, Gianluca (Committee member) / Bowden, Stuart (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018