Matching Items (93)
149730-Thumbnail Image.png
Description
Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears

Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears as a model in hydrodynamics, nonlinear optics, quantum condensates, heat pulses in solids and various other nonlinear instability phenomena. In mathematics, one of the interests is to look at the wave interaction: waves propagation with different speeds and/or different directions produces either small perturbations comparable with linear behavior, or creates solitary waves, or even leads to singular solutions. This dissertation studies the global behavior of finite energy solutions to the $d$-dimensional focusing NLS equation, $i partial _t u+Delta u+ |u|^{p-1}u=0, $ with initial data $u_0in H^1,; x in Rn$; the nonlinearity power $p$ and the dimension $d$ are chosen so that the scaling index $s=frac{d}{2}-frac{2}{p-1}$ is between 0 and 1, thus, the NLS is mass-supercritical $(s>0)$ and energy-subcritical $(s<1).$ For solutions with $ME[u_0]<1$ ($ME[u_0]$ stands for an invariant and conserved quantity in terms of the mass and energy of $u_0$), a sharp threshold for scattering and blowup is given. Namely, if the renormalized gradient $g_u$ of a solution $u$ to NLS is initially less than 1, i.e., $g_u(0)<1,$ then the solution exists globally in time and scatters in $H^1$ (approaches some linear Schr"odinger evolution as $ttopminfty$); if the renormalized gradient $g_u(0)>1,$ then the solution exhibits a blowup behavior, that is, either a finite time blowup occurs, or there is a divergence of $H^1$ norm in infinite time. This work generalizes the results for the 3d cubic NLS obtained in a series of papers by Holmer-Roudenko and Duyckaerts-Holmer-Roudenko with the key ingredients, the concentration compactness and localized variance, developed in the context of the energy-critical NLS and Nonlinear Wave equations by Kenig and Merle. One of the difficulties is fractional powers of nonlinearities which are overcome by considering Besov-Strichartz estimates and various fractional differentiation rules.
ContributorsGuevara, Cristi Darley (Author) / Roudenko, Svetlana (Thesis advisor) / Castillo_Chavez, Carlos (Committee member) / Jones, Donald (Committee member) / Mahalov, Alex (Committee member) / Suslov, Sergei (Committee member) / Arizona State University (Publisher)
Created2011
137617-Thumbnail Image.png
Description
This honors thesis utilizes smart home components and concepts from Dr. Burleson's Game as Life, Life as Game (GaLLaG) systems. The thesis focuses on an automated lifestyle, where individuals utilize technology, such as door sensors, appliance and lamp modules, and system notifications, to assist in daily activities. The findings from

This honors thesis utilizes smart home components and concepts from Dr. Burleson's Game as Life, Life as Game (GaLLaG) systems. The thesis focuses on an automated lifestyle, where individuals utilize technology, such as door sensors, appliance and lamp modules, and system notifications, to assist in daily activities. The findings from our efforts to date indicate that after weeks of observations, there is no evidence that automated lifestyles create more productive and healthy lifestyles and lead to overall satisfaction in life; however, there are certain design principles that would assist future home automation applications.
ContributorsRosales, Justin Bart (Author) / Burleson, Winslow (Thesis director) / Walker, Erin (Committee member) / Hekler, Eric (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
Description
It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement

It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement on conventional real-world performance. These measurements are then used as inputs for a model optimal, model agnostic, smoothing for calibration of a laser scribe and online tracking of velocimeter using video input. Using appropriate smooth interpolation to increase effective sample density can reduce uncertainty and improve estimates. Use of the proper negative offset of the template function has the result of creating a convolution with higher local curvature than either template of target function which allows improved center-finding. Using the Akaike Information Criterion with a smoothing spline function it is possible to perform a model-optimal smooth on scalar measurements without knowing the underlying model and to determine the function describing the uncertainty in that optimal smooth. An example of empiric derivation of the parameters for a rudimentary Kalman Filter from this is then provided, and tested. Using the techniques of Exploratory Data Analysis and the "Formulize" genetic algorithm tool to convert the spline models into more accessible analytic forms resulted in stable, properly generalized, KF with performance and simplicity that exceeds "textbook" implementations thereof. Validation of the measurement includes that, in analytic case, it led to arbitrary precision in measurement of feature; in reasonable test case using the methods proposed, a reasonable and consistent maximum error of around 0.3% the length of a pixel was achieved and in practice using pixels that were 700nm in size feature position was located to within ± 2 nm. Robust applicability is demonstrated by the measurement of indicator position for a King model 2-32-G-042 rotameter.
ContributorsMunroe, Michael R (Author) / Phelan, Patrick (Thesis advisor) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2012
136153-Thumbnail Image.png
Description
Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and

Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and the length of usability of gesture-driven devices, defined low-stress and intuitive gestures for users to interact with gesture recognition systems are necessary to consider. To measure stress, a Galvanic Skin Response instrument was used as a primary indicator, which provided evidence of the relationship between stress and intuitive gestures, as well as user preferences towards certain tasks and gestures during performance. Fifteen participants engaged in creating and performing their own gestures for specified tasks that would be required during the use of free-space gesture-driven devices. The tasks include "activation of the display," scroll, page, selection, undo, and "return to main menu." They were also asked to repeat their gestures for around ten seconds each, which would give them time and further insight of how their gestures would be appropriate or not for them and any given task. Surveys were given at different time to the users: one after they had defined their gestures and another after they had repeated their gestures. In the surveys, they ranked their gestures based on comfort, intuition, and the ease of communication. Out of those user-ranked gestures, health-efficient gestures, given that the participants' rankings were based on comfort and intuition, were chosen in regards to the highest ranked gestures.
ContributorsLam, Christine (Author) / Walker, Erin (Thesis director) / Danielescu, Andreea (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor) / School of Arts, Media and Engineering (Contributor) / Department of English (Contributor) / Computing and Informatics Program (Contributor)
Created2015-05
136160-Thumbnail Image.png
Description
Technological advances in the past decade alone are calling for modifications to the usability of various devices. Physical human interaction is becoming a popular method to communicate with user interfaces. This ranges from touch-based devices such as an iPad or tablet to free space gesture systems such as the Microsoft

Technological advances in the past decade alone are calling for modifications to the usability of various devices. Physical human interaction is becoming a popular method to communicate with user interfaces. This ranges from touch-based devices such as an iPad or tablet to free space gesture systems such as the Microsoft Kinect. With the rise in popularity of these types of devices comes the increased amount of them in public areas. Public areas frequently use walk-up-and-use displays, which give many people the opportunity to interact with them. Walk-up-and-use displays are intended to be simple enough that any individual, regardless of experience using similar technology, will be able to successfully maneuver the system. While this should be easy enough for the people using it, it is a more complicated task for the designers who are in charge of creating an interface simple enough to use while also accomplishing the tasks it was built to complete. A serious issue that I'll be addressing in this thesis is how a system designer knows what gestures to program the interface to successfully respond to. Gesture elicitation is one widely used method to discover common, intuitive, gestures that can be used with public walk-up-and-use interactive displays. In this paper, I present a study to extract common intuitive gestures for various tasks, an analysis of the responses, and suggestions for future designs of interactive, public, walk-up-and use interactions.
ContributorsVan Horn, Sarah Elizabeth (Author) / Walker, Erin (Thesis director) / Danielescu, Andreea (Committee member) / Economics Program in CLAS (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
135709-Thumbnail Image.png
Description
A study was undertaken to examine and test the effectiveness of a self-experimentation model, guided by a mobile app called PACO, in helping college students improve behaviors associated with sleep. Thirteen participants were enrolled in this study and their nightly sleep quality and sleep duration were measured via PACO as

A study was undertaken to examine and test the effectiveness of a self-experimentation model, guided by a mobile app called PACO, in helping college students improve behaviors associated with sleep. Thirteen participants were enrolled in this study and their nightly sleep quality and sleep duration were measured via PACO as they underwent three conditions: a baseline non-intervention phase, an expert-developed intervention phase, in which pre-made intervention examples were provided and used in PACO, and a self-experimentation phase, during which users were invited to develop their own sleep-behavior interventions using PACO. The participants were randomly placed into three groups, and the points of transition between phases was staggered across five weeks according to a multiple baseline design. The goal and hypothesis was to determine if sleep duration and sleep quality (sleep satisfaction) were improved in the final self-experimentation phase compared to the expert-developed experimentation phase and baseline phase, as well as in the expert-developed experimentation phase compared to the baseline phase. The results show little change, and nearly no improvement in the outcome measures between phases, leaving us unable to support the hypothesis. However, the existence of several limitations considered in retrospect, such as the small sample size, the short study time period, and technical difficulties with the PACO application means that no concrete conclusions should be made regarding the effectiveness of the self-experimentation model, nor the usability of PACO. Additional research should be made toward user motivation and modes of teaching the underlying behavioral science principles to casual users to increase effectiveness.
ContributorsNazareno, Alexandra Nicole (Author) / Hekler, Eric (Thesis director) / Walker, Erin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137085-Thumbnail Image.png
Description
Digital technologies are quickly being combined with and replacing teacher curriculums and student resource tools. This is particularly true with advances in digital textbooks as it provides a medium for opportunity and growth in the nature of the textbook as it pertains to students in the classroom. Although great strides

Digital technologies are quickly being combined with and replacing teacher curriculums and student resource tools. This is particularly true with advances in digital textbooks as it provides a medium for opportunity and growth in the nature of the textbook as it pertains to students in the classroom. Although great strides have been taken in intelligent tutoring systems personalized toward a student's needs there seems to be an overall disconnect between student needs in the classroom in not utilizing or adopting these technologies. In this paper I provide both conflicting and comparable needs of teachers and students surrounding the textbook to reveal the costs and benefits associated with technology adoption. Through 4 teacher interviews and 4 participatory prototyping sessions I found that students and teachers desire the following elements in technology: 1) Collaboration 2) Synchronicity 3) Adaptive 4) Automation. I discuss the implications of implementing such features and how they could be applied in integrated Q&A system to encourage collaborative learning.
ContributorsRodriguez, James Paul (Author) / Walker, Erin (Thesis director) / Finn, Edward (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / WPC Graduate Programs (Contributor)
Created2014-05
137817-Thumbnail Image.png
Description
G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs

G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs that currently provide healthcare facilities in developing countries. The market size for healthcare aid in developing countries is estimated to be $1.7 billion. The plan also analyses the customer's value chain and buying cycle by using voice of the customer data. The strategic position analysis profiles G3Box's competition and discusses the company's differential advantage versus other options for healthcare facilities in developing countries. Next the document discusses G3Box's market strategy and implementation, along with outlining a value proposition for the company. G3Box has two objectives for 2013: 1) Increase sales revenue to $1.3 million and 2) increase market presence to 25%. In order to reach these objectives, G3Box has developed a primary and secondary strategic focus for each objective. The primary strategies are relationship selling and online marketing. The secondary strategies are developing additional value-added activities and public relations.
ContributorsWalters, John (Author) / Denning, Michael (Thesis director) / Ostrom, Lonnie (Committee member) / Carroll, James (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137819-Thumbnail Image.png
Description
The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial

The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial viability of the system installations as well as the purchase price. The research was conducted using PPAs and historical solar power production data from the ASU's Energy Information System (EIS). The results indicate that most PPAs slightly underestimate the annual energy yield. However, the modeled power output from PVsyst indicates that higher energy outputs are possible with better system monitoring.
ContributorsVulic, Natasa (Author) / Bowden, Stuart (Thesis director) / Bryan, Harvey (Committee member) / Sharma, Vivek (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12