Matching Items (95)
151119-Thumbnail Image.png
Description
The spread of invasive species may be greatly affected by human responses to prior species spread, but models and estimation methods seldom explicitly consider human responses. I investigate the effects of management responses on estimates of invasive species spread rates. To do this, I create an agent-based simulation model of

The spread of invasive species may be greatly affected by human responses to prior species spread, but models and estimation methods seldom explicitly consider human responses. I investigate the effects of management responses on estimates of invasive species spread rates. To do this, I create an agent-based simulation model of an insect invasion across a county-level citrus landscape. My model provides an approximation of a complex spatial environment while allowing the "truth" to be known. The modeled environment consists of citrus orchards with insect pests dispersing among them. Insects move across the simulation environment infesting orchards, while orchard managers respond by administering insecticide according to analyst-selected behavior profiles and management responses may depend on prior invasion states. Dispersal data is generated in each simulation and used to calculate spread rate via a set of estimators selected for their predominance in the empirical literature. Spread rate is a mechanistic, emergent phenomenon measured at the population level caused by a suite of latent biological, environmental, and anthropogenic. I test the effectiveness of orchard behavior profiles on invasion suppression and evaluate the robustness of the estimators given orchard responses. I find that allowing growers to use future expectations of spread in management decisions leads to reduced spread rates. Acting in a preventative manner by applying insecticide before insects are actually present, orchards are able to lower spread rates more than by reactive behavior alone. Spread rates are highly sensitive to spatial configuration. Spatial configuration is hardly a random process, consisting of many latent factors often not accounted for in spread rate estimation. Not considering these factors may lead to an omitted variables bias and skew estimation results. The ability of spread rate estimators to predict future spread varies considerably between estimators, and with spatial configuration, invader biological parameters, and orchard behavior profile. The model suggests that understanding the latent factors inherent to dispersal is important for selecting phenomenological models of spread and interpreting estimation results. This indicates a need for caution when evaluating spread. Although standard practice, current empirical estimators may both over- and underestimate spread rate in the simulation.
ContributorsShanafelt, David William (Author) / Fenichel, Eli P (Thesis advisor) / Richards, Timothy (Committee member) / Janssen, Marco (Committee member) / Arizona State University (Publisher)
Created2012
Description
Females are highly vulnerable to the effects of methamphetamine, and understanding the mechanisms of this is critical to addressing methamphetamine use as a public health issue. Hormones may play a role in methamphetamine sensitivity; thus, the fluctuation of various endogenous peptides during the postpartum experience is of interest. This honors

Females are highly vulnerable to the effects of methamphetamine, and understanding the mechanisms of this is critical to addressing methamphetamine use as a public health issue. Hormones may play a role in methamphetamine sensitivity; thus, the fluctuation of various endogenous peptides during the postpartum experience is of interest. This honors thesis project explored the relation between anxiety-like behavior, as measured by activity in an open field, and conditioned place preference to methamphetamine in female versus male rats. The behavior of postpartum as well as virgin female rats was compared to that of male rats. There was not a significant difference between males and females in conditioned place preference to methamphetamine, yet females showed higher locomotor activity in response to the drug as well as increased anxiety-like behavior in open field testing as compared to males. Further study is vital to comprehending the complex mechanisms of sex differences in methamphetamine addiction.
ContributorsBaker, Allison Nicole (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Hansen, Whitney (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137674-Thumbnail Image.png
Description
Sports related concussions, or mild traumatic brain injuries (mTBI), have recently increased in prevalence, and thus gained a great deal of recognition from the public and the media. While the acute symptoms associated with concussions are well known, which include headaches, dizziness, vomiting, and fatigue, recent research has indicated that

Sports related concussions, or mild traumatic brain injuries (mTBI), have recently increased in prevalence, and thus gained a great deal of recognition from the public and the media. While the acute symptoms associated with concussions are well known, which include headaches, dizziness, vomiting, and fatigue, recent research has indicated that there can be severe chronic consequences of multiple conditions. Most notably, a disease called Chronic Traumatic Encephalopathy (CTE) has been linked to multiple mTBIs, which produces symptoms similar to Alzheimer's disease and dementia, in addition to personality changes, increased suicidality, and in some cases death. This knowledge has led the NFL to take steps to protect their players, and increase both the understanding and awareness of the problems associated with multiple concussions. This comes with many problems, however, as players and fans alike are quick to resist any type of change to the rules or policies present in football, in fear that it may damage the integrity of the game. The NFL is thus forced into a difficult position, and must balance public opinion and player safety. There are things that can be done, however, that do not threaten the game itself, such as investing in concussion research and safety equipment design that will more effectively protect the brain from concussions.
ContributorsAiello, Mimi Elizabeth (Author) / Olive, M. Foster (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Camp, Bryan (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2013-05
136843-Thumbnail Image.png
Description
An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next

An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next few years.
ContributorsNelson, Nicholas Alan (Author) / Olive, M. Foster (Thesis director) / Brewer, Gene (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-05
137493-Thumbnail Image.png
DescriptionThis paper provides an analysis of the differences in impacts made by companies that promote their sustainability efforts. A comparison of companies reveals that the ones with greater supply chain influence and larger consumer bases can make more concrete progress in terms of accomplishment for the sustainability realm.
ContributorsBeaubien, Courtney Lynn (Author) / Anderies, John (Thesis director) / Allenby, Brad (Committee member) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137433-Thumbnail Image.png
ContributorsChandler, N. Kayla (Author) / Neisewander, Janet (Thesis director) / Sanabria, Federico (Committee member) / Olive, M. Foster (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05
141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28
149377-Thumbnail Image.png
Description
As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for

As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for high energy conversion efficiency in both processes, respectively. The first half of this dissertation discusses the practically achievable energy conversion efficiency limit of solar cells. Since the demonstration of the Si solar cell in 1954, the performance of solar cells has been improved tremendously and recently reached 41.6% energy conversion efficiency. However, it seems rather challenging to further increase the solar cell efficiency. The state-of-the-art triple junction solar cells are analyzed to help understand the limiting factors. To address these issues, the monolithically integrated II-VI and III-V material system is proposed for solar cell applications. This material system covers the entire solar spectrum with a continuous selection of energy bandgaps and can be grown lattice matched on a GaSb substrate. Moreover, six four-junction solar cells are designed for AM0 and AM1.5D solar spectra based on this material system, and new design rules are proposed. The achievable conversion efficiencies for these designs are calculated using the commercial software package Silvaco with real material parameters. The second half of this dissertation studies the semiconductor luminescence refrigeration, which corresponds to over 100% energy usage efficiency. Although cooling has been realized in rare-earth doped glass by laser pumping, semiconductor based cooling is yet to be realized. In this work, a device structure that monolithically integrates a GaAs hemisphere with an InGaAs/GaAs quantum-well thin slab LED is proposed to realize cooling in semiconductor. The device electrical and optical performance is calculated. The proposed device then is fabricated using nine times photolithography and eight masks. The critical process steps, such as photoresist reflow and dry etch, are simulated to insure successful processing. Optical testing is done with the devices at various laser injection levels and the internal quantum efficiency, external quantum efficiency and extraction efficiency are measured.
ContributorsWu, Songnan (Author) / Zhang, Yong-Hang (Thesis advisor) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Belitsky, Andrei (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2010
135630-Thumbnail Image.png
Description
Climate change presents the urgent need for effective sustainable water management that is capable of preserving natural resources while maintaining economical stability. States like California rely heavily on groundwater pumping for agricultural use, contributing to land subsidence and insufficient returns to water resources. The recent California drought has impacted agricultural

Climate change presents the urgent need for effective sustainable water management that is capable of preserving natural resources while maintaining economical stability. States like California rely heavily on groundwater pumping for agricultural use, contributing to land subsidence and insufficient returns to water resources. The recent California drought has impacted agricultural production of certain crops. In this thesis, we present an agent-based model of farmers adapting to drought conditions by making crop choice decisions, much like the decisions Californian farmers have made. We use the Netlogo platform to capture the 2D spatial view of an agricultural system with changes in annual rainfall due to drought conditions. The goal of this model is to understand some of the simple rules farmers may follow to self-govern their consumption of a water resource. Farmer agents make their crop decisions based on deficit irrigation crop production function and a net present value discount rate. The farmers choose between a thirsty crop with a high production cost and a dry crop with a low production cost. Simulations results show that farmers switch crops in accordance with limited water and land resources. Farmers can maintain profit and yield by following simple rules of crop switching based on future yields and optimal irrigation. In drought conditions, individual agents expecting lower annual rainfall were able to increase their total profits. The maintenance of crop yield and profit is evidence of successful adaptation when farmers switch to crops that require less water.
ContributorsGokool, Rachael Shanta (Author) / Janssen, Marco (Thesis director) / Eakin, Hallie (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
130879-Thumbnail Image.png
Description
Major Depressive Disorder (MDD) affects over 300 million people worldwide, with the hippocampus showing decreased volume and activity in patients with MDD. The current study investigated whether a novel preclinical model of depression, unpredictable intermittent restraint (UIR), would decrease hippocampal neuronal dendritic complexity. Adult Sprague Dawley rats (24 male, 24

Major Depressive Disorder (MDD) affects over 300 million people worldwide, with the hippocampus showing decreased volume and activity in patients with MDD. The current study investigated whether a novel preclinical model of depression, unpredictable intermittent restraint (UIR), would decrease hippocampal neuronal dendritic complexity. Adult Sprague Dawley rats (24 male, 24 female) were equally divided into 4 groups: control males (CON-M), UIR males (UIR-M), control females (CON-F) and UIR females (UIR-F). UIR groups received restraint and shaking on an orbital shaker on a randomized schedule for 30 or 60 minutes/day for two to six days in a row for 26 days (21 total UIR days) before behavioral testing commenced. UIR continued and was interspersed between behavioral test days. At the end of behavioral testing, brains were processed. The behavior is published and not part of my honor’s thesis; my contribution involved quantifying and analyzing neurons in the hippocampus. Several neuronal types are found in the CA3 subregion of the hippocampus and I focused on short shaft (SS) neurons, which show different sensitivities to stress than the more common long shaft (LS) variety. Brains sections were mounted to slides and Golgi stained. SS neurons were drawn using a microscope with camera lucida attachment and quantified using the number of bifurcations and dendritic intersections as metrics for dendritic complexity in the apical and basal areas separately. The hypothesis that SS neurons in the CA3 region of the hippocampus would exhibit apical dendritic simplification in both sexes after UIR was not supported by our findings. In contrast, following UIR, SS apical dendrites were more complex in both sexes compared to controls. Although unexpected, we believe that the UIR paradigm was an effective stressor, robust enough to illicit neuronal adaptations. It appears that the time from the end of UIR to when the brain tissue was collected, or the post-stress recovery period, and/or repeated behavioral testing may have played a role in the observed increased neuronal complexity. Future studies are needed to parse out these potential effects.
ContributorsAcuna, Amanda Marie (Author) / Conrad, Cheryl (Thesis director) / Corbin, William (Committee member) / Olive, M. Foster (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12