Matching Items (13)
Filtering by

Clear all filters

152019-Thumbnail Image.png
Description
In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the

In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the nonlinear and anharmonic regime in the normal phase of strange quark matter. We point out several qualitative effects due to the anharmonicity, although quantitatively they appear to be relatively small. In the corresponding study, we take into account the interplay between the non- leptonic and semileptonic weak processes. The results can be important in order to relate accessible observables of compact stars to their internal composition. We also use quantum field theoretical methods to study the transport properties in monolayer graphene in a strong magnetic field. The corresponding quasi-relativistic system re- veals an anomalous quantum Hall effect, whose features are directly connected with the spontaneous flavor symmetry breaking. We study the microscopic origin of Fara- day rotation and magneto-optical transmission in graphene and show that their main features are in agreement with the experimental data.
ContributorsWang, Xinyang, Ph.D (Author) / Shovkovy, Igor (Thesis advisor) / Belitsky, Andrei (Committee member) / Easson, Damien (Committee member) / Peng, Xihong (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2013
150890-Thumbnail Image.png
Description
Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this ga

Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this gap between simulation and observation by rendering the model output in image format which is then processed by tools commonly used in observational astronomy. Images are synthesized in various filters by folding the output of cosmological simulations of gasdynamics with star-formation and dark matter with the Bruzual- Charlot stellar population synthesis models. A variation of the Virgo-Gadget numerical simulation code is used with the hybrid gas and stellar formation models of Springel and Hernquist (2003). Outputs taken at various redshifts are stacked to create a synthetic view of the simulated star clusters. Source Extractor (SExtractor) is used to find groupings of stellar populations which are considered as galaxies or galaxy building blocks and photometry used to estimate the rest frame luminosities and distribution functions. With further refinements, this is expected to provide support for missions such as JWST, as well as to probe what additional physics are needed to model the data. The results show good agreement in many respects with observed properties of the galaxy luminosity function (LF) over a wide range of high redshifts. In particular, the slope (alpha) when fitted to the standard Schechter function shows excellent agreement both in value and evolution with redshift, when compared with observation. Discrepancies of other properties with observation are seen to be a result of limitations of the simulation and additional feedback mechanisms which are needed.
ContributorsMorgan, Robert (Author) / Windhorst, Rogier A (Thesis advisor) / Scannapieco, Evan (Committee member) / Rhoads, James (Committee member) / Gardner, Carl (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
150947-Thumbnail Image.png
Description
Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have

Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have written a "1.5-D" radiative transfer code to calculate disk temperatures assuming hydrostatic and radiative equilibrium. The model solves for the temperature at all locations simultaneously using Rybicki's method, converges rapidly at high optical depth, and retains full frequency dependence. The likely cause of accretional heating in PPDs is the magnetorotational instability (MRI), which acts where gas ionization is sufficiently high for gas to couple to the magnetic field. This will occur in surface layers of the disk, leaving the interior portions of the disk inactive ("dead zone"). I calculate temperatures in PPDs undergoing such "layered accretion." Since the accretional heating is concentrated far from the midplane, temperatures in the disk's interior are lower than in PPDs modeled with vertically uniform accretion. The method is used to study for the first time disks evolving via the magnetorotational instability, which operates primarily in surface layers. I find that temperatures in layered accretion disks do not significantly differ from those of "passive disks," where no accretional heating exists. Emergent spectra are insensitive to active layer thickness, making it difficult to observationally identify disks undergoing layered vs. uniform accretion. I also calculate the ionization chemistry in PPDs, using an ionization network including multiple charge states of dust grains. Combined with a criterion for the onset of the MRI, I calculate where the MRI can be initiated and the extent of dead zones in PPDs. After accounting for feedback between temperature and active layer thickness, I find the surface density of the actively accreting layers falls rapidly with distance from the protostar, leading to a net outward flow of mass from ~0.1 to 3 AU. The clearing out of the innermost zones is possibly consistent with the observed behavior of recently discovered "transition disks."
ContributorsLesniak, Michael V., III (Author) / Desch, Steven J. (Thesis advisor) / Scannapieco, Evan (Committee member) / Timmes, Francis (Committee member) / Starrfield, Sumner (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
150778-Thumbnail Image.png
Description
This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements

This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements presented here for the nuclei Chlorine ( 35Cl) and Aluminum ( 27Al ) are part of a program with the ultimate goal of measuring the asymmetry in the angular distribution of gamma rays emitted in the capture of neutrons on protons, with a precision better than 10-8, in order to extract the weak hadronic coupling constant due to pion exchange interaction with isospin change equal with one ( hπ 1). Based on theoretical calculations asymmetry in the angular distribution of the gamma rays from neutron capture on protons has an estimated size of 5·10-8. This implies that the Al parity violation asymmetry and its uncertainty have to be known with a precision smaller than 4·10-8. The proton target is liquid Hydrogen (H2) contained in an Aluminum vessel. Results are presented for parity violation and parity-conserving asymmetries in Chlorine and Aluminum. The systematic and statistical uncertainties in the calculation of the parity-violating and parity-conserving asymmetries are discussed.
ContributorsBalascuta, Septimiu (Author) / Alarcon, Ricardo (Thesis advisor) / Belitsky, Andrei (Committee member) / Doak, Bruce (Committee member) / Comfort, Joseph (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
149377-Thumbnail Image.png
Description
As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for

As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for high energy conversion efficiency in both processes, respectively. The first half of this dissertation discusses the practically achievable energy conversion efficiency limit of solar cells. Since the demonstration of the Si solar cell in 1954, the performance of solar cells has been improved tremendously and recently reached 41.6% energy conversion efficiency. However, it seems rather challenging to further increase the solar cell efficiency. The state-of-the-art triple junction solar cells are analyzed to help understand the limiting factors. To address these issues, the monolithically integrated II-VI and III-V material system is proposed for solar cell applications. This material system covers the entire solar spectrum with a continuous selection of energy bandgaps and can be grown lattice matched on a GaSb substrate. Moreover, six four-junction solar cells are designed for AM0 and AM1.5D solar spectra based on this material system, and new design rules are proposed. The achievable conversion efficiencies for these designs are calculated using the commercial software package Silvaco with real material parameters. The second half of this dissertation studies the semiconductor luminescence refrigeration, which corresponds to over 100% energy usage efficiency. Although cooling has been realized in rare-earth doped glass by laser pumping, semiconductor based cooling is yet to be realized. In this work, a device structure that monolithically integrates a GaAs hemisphere with an InGaAs/GaAs quantum-well thin slab LED is proposed to realize cooling in semiconductor. The device electrical and optical performance is calculated. The proposed device then is fabricated using nine times photolithography and eight masks. The critical process steps, such as photoresist reflow and dry etch, are simulated to insure successful processing. Optical testing is done with the devices at various laser injection levels and the internal quantum efficiency, external quantum efficiency and extraction efficiency are measured.
ContributorsWu, Songnan (Author) / Zhang, Yong-Hang (Thesis advisor) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Belitsky, Andrei (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2010
157426-Thumbnail Image.png
Description
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses.

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses. The prrAB TCS is essential in Mtb, thus representing an auspicious drug target; however, the inability to generate an Mtb ΔprrAB mutant complicates investigating how this TCS contributes to pathogenesis. Mycobacterium smegmatis, a commonly used M. tuberculosis genetic surrogate was used here. This work shows that prrAB is not essential in M. smegmatis. During ammonium stress, the ΔprrAB mutant excessively accumulates triacylglycerol lipids, a phenotype associated with M. tuberculosis dormancy and chronic infection. Additionally, triacylglycerol biosynthetic genes were induced in the ΔprrAB mutant relative to the wild-type and complementation strains during ammonium stress. Next, RNA-seq was used to define the M. smegmatis PrrAB regulon. PrrAB regulates genes participating in respiration, metabolism, redox balance, and oxidative phosphorylation. The M. smegmatis ΔprrAB mutant is compromised for growth under hypoxia, is hypersensitive to cyanide, and fails to induce high-affinity respiratory genes during hypoxia. Furthermore, PrrAB positively regulates the hypoxia-responsive dosR TCS response regulator, potentially explaining the hypoxia-mediated growth defects in the ΔprrAB mutant. Despite inducing genes encoding the F1F0 ATP synthase, the ΔprrAB mutant accumulates significantly less ATP during aerobic, exponential growth compared to the wild-type and complementation strains. Finally, the M. smegmatis ΔprrAB mutant exhibited growth impairment in media containing gluconeogenic carbon sources. M. tuberculosis mutants unable to utilize these substrates fail to establish chronic infection, suggesting that PrrAB may regulate Mtb central carbon metabolism in response to chronic infection. In conclusion, 1) prrAB is not universally essential in mycobacteria; 2) M. smegmatis PrrAB regulates genetic responsiveness to nutrient and oxygen stress; and 3) PrrAB may provide feed-forward control of the DosRS TCS and dormancy phenotypes. The data generated in these studies provide insight into the mycobacterial PrrAB TCS transcriptional regulon, PrrAB essentiality in Mtb, and how PrrAB may mediate stresses encountered by Mtb during the transition to chronic infection.
ContributorsMaarsingh, Jason (Author) / Haydel, Shelley E (Thesis advisor) / Roland, Kenneth (Committee member) / Sandrin, Todd (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2019
154297-Thumbnail Image.png
Description
In this thesis, I present the study of nucleon structure from distinct perspectives. I start by elaborating the motivations behind the endeavors and then introducing the key concept, namely the generalized parton distribution functions (GPDs), which serves as the frame- work describing hadronic particles in terms of their fundamental constituents.

In this thesis, I present the study of nucleon structure from distinct perspectives. I start by elaborating the motivations behind the endeavors and then introducing the key concept, namely the generalized parton distribution functions (GPDs), which serves as the frame- work describing hadronic particles in terms of their fundamental constituents. The second chapter is then devoted to a detailed phenomenological study of the Virtual Compton Scattering (VCS) process, where a more comprehensive parametrization is suggested. In the third chapter, the renormalization kernels that enters the QCD evolution equations at twist- 4 accuracy are computed in terms of Feynman diagrams in momentum space, which can be viewed as an extension of the work by Bukhvostov, Frolov, Lipatov, and Kuraev (BKLK). The results can be used for determining the QCD background interaction for future precision measurements.
ContributorsJi, Yao, Ph. D (Author) / Belitsky, Andrei (Thesis advisor) / Lebed, Richard (Committee member) / Schmidt, Kevin E (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2016
154965-Thumbnail Image.png
Description
The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple

The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple to Standard Model fields through Higgs Portal or Kinetic Mixing operators and radiate particles that contribute to the diffuse gamma ray background. In this work we calculate the properties of these strings, including finding effective couplings between the strings and Standard Model fields. Explosive particle production after inflation, known as preheating, would have produced a stochastic background of gravitational waves (GW). This work shows how the presence of realistic additional fields and interactions can affect this prediction dramatically. Specifically, it considers the inflaton to be coupled to a light scalar field, and shows that even a very small quartic self-interaction term will reduce the amplitude of the gravitational wave spectrum. For self-coupling $\lambda_{\chi} \gtrsim g^2$, where $g^2$ is the inflaton-scalar coupling, the peak energy density goes as $\Omega_{\rm GW}^{(\lambda_{\chi})} / \Omega_{\rm GW}^{(\lambda_{\chi}=0)} \sim (g^2/\lambda_{\chi})^{2}$. Finally, leptonic charge-parity (CP) violation could be an important clue to understanding the origin of our universe's matter-antimatter asymmetry, and long-baseline neutrino oscillation experiments in the coming decade may uncover this. The CP violating effects of a possible fourth ``sterile" neutrino can interfere with the usual three neutrinos; this work shows how combinations of various measurements can help break those degeneracies.
ContributorsHyde, Jeffrey Morgan (Author) / Vachaspati, Tanmay (Thesis advisor) / Easson, Damien (Committee member) / Belitsky, Andrei (Committee member) / Comfort, Joseph (Committee member) / Arizona State University (Publisher)
Created2016
154601-Thumbnail Image.png
Description
The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein,

The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein, I report the use of dynamic bioreactor technology to profile the impact of physiological fluid shear levels on the pathogenesis-related responses of ST313 pathovar, 5579. I show that culture of 5579 under these conditions induces profoundly different pathogenesis-related phenotypes than those normally observed when cultures are grown conventionally. Surprisingly, in response to physiological fluid shear, 5579 exhibited positive swimming motility, which was unexpected, since this strain was initially thought to be non-motile. Moreover, fluid shear altered the resistance of 5579 to acid, oxidative and bile stress, as well as its ability to colonize human colonic epithelial cells. This work leverages from and advances studies over the past 16 years in the Nickerson lab, which are at the forefront of bacterial mechanosensation and further demonstrates that bacterial pathogens are “hardwired” to respond to the force of fluid shear in ways that are not observed during conventional culture, and stresses the importance of mimicking the dynamic physical force microenvironment when studying host-pathogen interactions. The results from this study lay the foundation for future work to determine the underlying mechanisms operative in 5579 that are responsible for these phenotypic observations.
ContributorsCastro, Christian (Author) / Nickerson, Cheryl A. (Thesis advisor) / Ott, C. Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2016
153589-Thumbnail Image.png
Description
Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation

Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation networks and increased populations of immunocompromised individuals (as a result of HIV infection, drug use, cancer therapy, aging, etc). While it is unclear as to how Salmonella ST313 strains cause invasive disease in humans, it is intriguing that the genomic profile of some of these pathovars indicates key differences between classic Typhimurium (broad host range), but similarities to human-specific typhoidal Salmonella Typhi and Paratyphi. In an effort to advance fundamental understanding of the pathogenesis mechanisms of ST313 in humans, I report characterization of the molecular genetic, phenotypic and virulence profiles of D23580 (a representative ST313 strain). Preliminary studies to characterize D23580 virulence, baseline stress responses, and biochemical profiles, and in vitro infection profiles in human surrogate 3-D tissue culture models were done using conventional bacterial culture conditions; while subsequent studies integrated a range of incrementally increasing fluid shear levels relevant to those naturally encountered by D23580 in the infected host to understand the impact of biomechanical forces in altering these characteristics. In response to culture of D23580 under these conditions, distinct differences in transcriptional biosignatures, pathogenesis-related stress responses, in vitro infection profiles and in vivo virulence in mice were observed as compared to those of classic Salmonella pathovars tested.

Collectively, this work represents the first characterization of in vivo virulence and in vitro pathogenesis properties of D23580, the latter using advanced human surrogate models that mimic key aspects of the parental tissue. Results from these studies highlight the importance of studying infectious diseases using an integrated approach that combines actions of biological and physical networks that mimic the host-pathogen microenvironment and regulate pathogen responses.
ContributorsYang, Jiseon (Author) / Nickerson, Cheryl A. (Thesis advisor) / Chang, Yung (Committee member) / Stout, Valerie (Committee member) / Ott, C Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015