Matching Items (84)
158328-Thumbnail Image.png
Description
Modern agriculture faces multiple challenges: it must produce more food for a growing global population, adopt more efficient and sustainable management strategies, and adapt to climate change. One potential component of a sustainable management strategy is the application of biochar to agricultural soils. Biochar is the carbon-rich product of biomass

Modern agriculture faces multiple challenges: it must produce more food for a growing global population, adopt more efficient and sustainable management strategies, and adapt to climate change. One potential component of a sustainable management strategy is the application of biochar to agricultural soils. Biochar is the carbon-rich product of biomass pyrolysis, which contains large proportions of aromatic compounds that influence its stability in soil. Concomitant with carbon sequestration, biochar has the potential to increase soil fertility through increasing soil pH, moisture and nutrient retention. Changes in the soil physical and chemical properties can result in shifts in the soil microbiome, which are the proximate drivers of soil processes. This dissertation aims to determine the compositional and functional changes in the soil microbial community in response to the addition of a low-volatile matter biochar. First, the impact of biochar on the bacterial community was investigated in two important agricultural soils (Oxisol and Mollisol) with contrasting fertility under two different cropping systems (conventional sweet corn and zero-tillage napiergrass) one month and one year after the initial addition. This study revealed that the effects of biochar on the bacterial community were most pronounced in the Oxisol under napiergrass cultivation, however soil type was the strongest determinant of the bacterial community. A follow-up study was conducted using shotgun metagenomics to probe the functional community of soil microcosms, which contained Oxisol soil under napiergrass two years after the initial addition of biochar. Biochar significantly increased total carbon in the soils but had little impact on other soil properties. Theses analyses showed that biochar-amended soil microcosms exhibited significant shifts in the functional community and key metabolic pathways related to carbon turnover and denitrification. Given the distinct alterations to the biochar-amended community, deoxyribose nucleic acid (DNA) stable isotope probing was used to target the active populations. These analyses revealed that biochar did not significantly shift the active community in soil microcosms. Overall, these results indicate that the impact of biochar on the active soil community is transient in nature. Yet, biochar may still be a promising strategy for long-term carbon sequestration in agricultural soils.
ContributorsYu, Julian (Author) / Penton, C. Ryan (Thesis advisor) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2020
157820-Thumbnail Image.png
Description
There is a growing consensus that photodegradation accelerates litter decomposition in drylands, but the mechanisms are not well understood. In a previous field study examining how exposure to solar radiation affects decomposition of 12 leaf litter types over 34 months in the Sonoran Desert, litter exposed to UV/blue wavebands of

There is a growing consensus that photodegradation accelerates litter decomposition in drylands, but the mechanisms are not well understood. In a previous field study examining how exposure to solar radiation affects decomposition of 12 leaf litter types over 34 months in the Sonoran Desert, litter exposed to UV/blue wavebands of solar radiation decayed faster. The concentration of water-soluble compounds was higher in decayed litter than in new (recently senesced) litter, and higher in decayed litter exposed to solar radiation than other decayed litter. Microbial respiration of litter incubated in high relative humidity for 1 day was greater in decayed litter than new litter and greatest in decayed litter exposed to solar radiation. Respiration rates were strongly correlated with decay rates and water-soluble concentrations of litter. The objective of the current study was to determine why respiration rates were higher in decayed litter and why this effect was magnified in litter exposed to solar radiation. First, I evaluated whether photodegradation enhanced the quantity of dissolved organic carbon (DOC) in litter by comparing DOC concentrations of photodegraded litter to new litter. Second, I evaluated whether photodegradation increased the quality of DOC for microbial utilization by measuring respiration of leachates with equal DOC concentrations after applying them to a soil inoculum. I hypothesized that water vapor sorption may explain differences in respiration among litter age or sunlight exposure treatments. Therefore, I assessed water vapor sorption of litter over an 8-day incubation in high relative humidity. Water vapor sorption rates over 1 and 8 days were slower in decayed than new litter and not faster in photodegraded than other decayed litter. However, I found that 49-78% of the variation in respiration could be explained by the relative amount of water litter absorbed over 1 day compared to 8 days, a measure referred to as relative water content. Decayed and photodegraded litter had higher relative water content after 1 day because it had a lower water-holding capacity. Higher respiration rates of decayed and photodegraded litter were attributed to faster microbial activation due to greater relative water content of that litter.
ContributorsBliss, Michael Scott (Author) / Day, Thomas A. (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Throop, Heather L. (Committee member) / Arizona State University (Publisher)
Created2019
Description
Cyanobacteria and algae living inside carbonate rocks (endoliths) have long been considered major contributors to bioerosion. Some bore into carbonates actively (euendoliths); others simply inhabit pre-existing pore spaces (cryptoendoliths). While naturalistic descriptions based on morphological identification have traditionally driven the field, modern microbial ecology has shown that this approach is

Cyanobacteria and algae living inside carbonate rocks (endoliths) have long been considered major contributors to bioerosion. Some bore into carbonates actively (euendoliths); others simply inhabit pre-existing pore spaces (cryptoendoliths). While naturalistic descriptions based on morphological identification have traditionally driven the field, modern microbial ecology has shown that this approach is insufficient to assess microbial diversity or make functional inferences. I examined endolithic microbiomes using 16S rRNA genes and lipid-soluble photosynthetic pigments as biomarkers, with the goal of reassessing endolith diversity by contrasting traditional and molecular approaches. This led to the unexpected finding that in all 41 littoral carbonate microbiomes investigated around Isla de Mona (Puerto Rico) and Menorca (Spain) populations of anoxygenic phototrophic bacteria (APBs) in the phyla Chloroflexi and Proteobacteria, were abundant, even sometimes dominant over cyanobacteria. This was not only novel, but it suggested that APBs may have been previously misidentified as morphologically similar cyanobacteria, and opened questions about their potential role as euendoliths. To test the euendolithic role of photosynthetic microbes, I set a time-course experiment exposing virgin non-porous carbonate substrate in situ, under the hypothesis that only euendoliths would be able to initially colonize it. This revealed that endolithic microbiomes, similar in biomass to those of mature natural communities, developed within nine months of exposure. And yet, APB populations were still marginal after this period, suggesting that they are secondary colonizers and not euendolithic. However, elucidating colonization dynamics to a sufficiently accurate level of molecular identification among cyanobacteria required the development of a curated cyanobacterial 16S rRNA gene reference database and web tool, Cydrasil. I could then detect that the pioneer euendoliths were in a novel cyanobacterial clade (named UBC), immediately followed by cyanobacteria assignable to known euendoliths. However, as bioerosion proceeded, a diverse set of likely cryptoendolithic cyanobacteria colonized the resulting pore spaces, displacing euendoliths. Endolithic colonization dynamics are thus swift but complex, and involve functionally diverse agents, only some of which are euendoliths. My work contributes a phylogenetically sound, functionally more defined understanding of the carbonate endolithic microbiome, and more specifically, Cydrasil provides a user-friendly framework to routinely move beyond morphology-based cyanobacterial systematics.
ContributorsRoush, Daniel (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Anbar, Ariel (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / Cao, Huansheng (Committee member) / Arizona State University (Publisher)
Created2020
161811-Thumbnail Image.png
Description
I studied the molecular mechanisms of ultraviolet radiation mitigation (UVR) in the terrestrial cyanobacterium Nostoc punctiforme ATCC 29133, which produces the indole-alkaloid sunscreen scytonemin and differentiates into motile filaments (hormogonia). While the early stages of scytonemin biosynthesis were known, the late stages were not. Gene deletion mutants were interrogated by

I studied the molecular mechanisms of ultraviolet radiation mitigation (UVR) in the terrestrial cyanobacterium Nostoc punctiforme ATCC 29133, which produces the indole-alkaloid sunscreen scytonemin and differentiates into motile filaments (hormogonia). While the early stages of scytonemin biosynthesis were known, the late stages were not. Gene deletion mutants were interrogated by metabolite analyses and confocal microscopy, demonstrating that the ebo gene cluster, was not only required for scytonemin biosynthesis, but was involved in the export of scytonemin monomers to the periplasm. Further, the product of gene scyE was also exported to the periplasm where it was responsible for terminal oxidative dimerization of the monomers. These results opened questions regarding the functional universality of the ebo cluster. To probe if it could play a similar role in organisms other than scytonemin producing cyanobacteria, I developed a bioinformatic pipeline (Functional Landscape And Neighbor Determining gEnomic Region Search; FLANDERS) and used it to scrutinize the neighboring regions of the ebo gene cluster in 90 different bacterial genomes for potentially informational features. Aside from the scytonemin operon and the edb cluster of Pseudomonas spp., responsible for nematode repellence, no known clusters were identified in genomic ebo neighbors, but many of the ebo adjacent regions were enriched in signal peptides for export, indicating a general functional connection between the ebo cluster and biosynthetic compartmentalization. Lastly, I investigated the regulatory span of the two-component regulator of the scytonemin operon (scyTCR) using RNAseq of scyTCR deletion mutants under UV induction. Surprisingly, the knockouts had decreased expression levels in many of the genes involved in hormogonia differentiation and in a putative multigene regulatory element, hcyA-D. This suggested that UV could be a cue for developmental motility responses in Nostoc, which I could confirm phenotypically. In fact, UV-A simultaneously elicited hormogonia differentiation and scytonemin production throughout a genetically homogenous population. I show through mutant analyses that the partner-switching mechanism coded for by hcyA-D acts as a hinge between the scytonemin and hormogonia based responses. Collectively, this dissertation contributes to the understanding of microbial adaptive responses to environmental stressors at the genetic and regulatory level, highlighting their phenomenological and mechanistic complexity.
ContributorsKlicki, Kevin (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Wilson, Melissa (Committee member) / Mukhopadhyay, Aindrila (Committee member) / Misra, Rajeev (Committee member) / Arizona State University (Publisher)
Created2021
161867-Thumbnail Image.png
Description
Biocrusts are microbial communities that inhabit arid soil surfaces, providing essential services to dryland ecosystems. A paradoxical filamentous cyanobacterium, Microcoleus vaginatus, resides within the biocrust. While is often pioneers the colonization of bare, nutrient-poor desert soils worldwide, it cannot fix dinitrogen. In nature, M. vaginatus coexists with a unique microbial

Biocrusts are microbial communities that inhabit arid soil surfaces, providing essential services to dryland ecosystems. A paradoxical filamentous cyanobacterium, Microcoleus vaginatus, resides within the biocrust. While is often pioneers the colonization of bare, nutrient-poor desert soils worldwide, it cannot fix dinitrogen. In nature, M. vaginatus coexists with a unique microbial community, a “cyanosphere”, that is characterized by a high abundance of diazotrophic heterotrophs. This suggests mutualistic relationships wherein nutrients are traded between phototrophs and heterotrophs. To explore these relationships, I performed targeted, pedigreed isolation of cyanosphere members and used co-cultivation to recreate the mutualism in culture. Results showed that, in the absence of fixed nitrogen, M. vaginatus grew well when co-cultured with cyanosphere diazotrophs, but only poorly or not at all when alone or with non-cyanosphere diazotrophs. In agreement with this, the experimental provision of nitrogen to natural populations resulted in a loss of diazotrophs from the cyanosphere compared to controls, but the addition of phosphorus did not. Additionally, the convergence of M. vaginatus trichomes into large bundles held by a common sheath was elicited in culture by the addition of cyanosphere diazotrophs, pointing to a role of cyanobacterial motility responses in the development of mutualistic interactions. I then demonstrated that the tendency of M. vaginatus to stay within bundles and close to the sheath-dwelling cyanosphere was dependent on the cyanosphere population size. This effect was likely mediated by glutamate that acted as a signaling molecule rather than as a N source and impacted the gliding speed and negative chemophobic responses on the cyanobacterium. Glutamate seems to be used as a cue to spatially optimize cyanobacterium-cyanosphere mutualistic exchanges. My findings have potential practical applications in restoration ecology, which I further pursued experimentally. Co-inoculation of soil with cyanosphere diazotrophs resulted in swifter development of biocrusts over inoculation with the cyanobacterium only. Further, their addition to disturbed native soils containing traces of cyanobacteria sufficed for the formation of cohesive biocrusts without cyanobacterial inoculation. The inclusion of such “biocrust probiotics” in biocrust restoration is recommended. Overall, this body of work elucidates the hitherto unknown role of beneficial heterotrophic bacteria in the initial formation and development of biocrusts.
ContributorsNelson, Corey (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Penton, C. Ryan (Committee member) / Gile, Gillian (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2021
129391-Thumbnail Image.png
Description

Cyanobacteria are considered good models for biohydrogen production because they are relatively simple organisms with a demonstrable ability to generate H2 under certain physiological conditions. However, most produce only little H2, revert readily to H2 consumption, and suffer from hydrogenase sensitivity to O2. Strains of the cyanobacteria Lyngbya aestuarii and

Cyanobacteria are considered good models for biohydrogen production because they are relatively simple organisms with a demonstrable ability to generate H2 under certain physiological conditions. However, most produce only little H2, revert readily to H2 consumption, and suffer from hydrogenase sensitivity to O2. Strains of the cyanobacteria Lyngbya aestuarii and Microcoleus chthonoplastes obtained from marine intertidal cyanobacterial mats were recently found to display much better H2 production potential. Because of their ecological origin in environments that become quickly anoxic in the dark, we hypothesized that this differential ability may have evolved to serve a role in the fermentation of the photosynthate. Here we show that, when forced to ferment internal substrate, these cyanobacteria display desirable characteristics of physiological H2 production. Among them, the strain L. aestuarii BL J had the fastest specific rates and attained the highest H2 concentrations during fermentation of photosynthate, which proceeded via a mixed acid fermentation pathway to yield acetate, ethanol, lactate, H2, CO2, and pyruvate. Contrary to expectations, the H2 yield per mole of glucose was only average compared to that of other cyanobacteria. Thermodynamic analyses point to the use of electron donors more electronegative than NAD(P)H in Lyngbya hydrogenases as the basis for its strong H2 production ability. In any event, the high specific rates and H2 concentrations coupled with the lack of reversibility of the enzyme, at the expense of internal, photosynthetically generated reductants, makes L. aestuarii BL J and/or its enzymes, a potentially feasible platform for large-scale H2 production.

ContributorsKothari, Ankita (Author) / Parameswaran, Prathap (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-10
Description

Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support

Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.

ContributorsNunes Da Rocha, Ulisses (Author) / Cadillo-Quiroz, Hinsby (Author) / Karaoz, Ulas (Author) / Rajeev, Lara (Author) / Klitgord, Niels (Author) / Dunn, Sean (Author) / Truong, Viet (Author) / Buenrostro, Mayra (Author) / Bowen, Benjamin P. (Author) / Garcia-Pichel, Ferran (Author) / Mukhopadhyay, Aindrila (Author) / Northen, Trent R. (Author) / Brodie, Eoin L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-19
128873-Thumbnail Image.png
Description

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene.

Conclusions: These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.

ContributorsMcLean, Carrie (Author) / Mielke, Clinton (Author) / Cordova, Jeanine (Author) / Langlais, Paul R. (Author) / Bowen, Benjamin (Author) / Miranda, Danielle (Author) / Coletta, Dawn (Author) / Mandarino, Lawrence (Author) / College of Health Solutions (Contributor)
Created2015-05-18
128737-Thumbnail Image.png
Description

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of individuals with metabolic syndrome. We further wanted to examine whether similar relationships that we have found previously in skeletal muscle exist in peripheral whole blood cells. All subjects (n=184) were Latino descent from the Arizona Insulin Resistance registry. Subjects were classified based on the metabolic syndrome phenotype according to the National Cholesterol Education Program’s Adult Treatment Panel III. Of the 184 Latino subjects in the study, 74 were classified with the metabolic syndrome and 110 were without. Whole blood gene expression profiling was performed using the Agilent 4x44K Whole Human Genome Microarray. Whole blood microarray analysis identified 1,432 probes that were altered in expression ≥1.2 fold and P<0.05 after Benjamini-Hochberg in the metabolic syndrome subjects. KEGG pathway analysis revealed significant enrichment for pathways including ribosome, oxidative phosphorylation and MAPK signaling (all Benjamini-Hochberg P<0.05). Whole blood mRNA expression changes observed in the microarray data were confirmed by quantitative RT-PCR. Transcription factor binding motif enrichment analysis revealed E2F1, ELK1, NF-kappaB, STAT1 and STAT3 significantly enriched after Bonferroni correction (all P<0.05). The results of the present study demonstrate that whole blood is a useful tissue for studying the metabolic syndrome and its underlying insulin resistance although the relationship between blood and skeletal muscle differs.

ContributorsTangen, Samantha (Author) / Tsinajinnie, Darwin (Author) / Nunez, Martha (Author) / Shaibi, Gabriel (Author) / Mandarino, Lawrence (Author) / Coletta, Dawn (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-17
128981-Thumbnail Image.png
Description

Background: Although the effect of the fat mass and obesity-associated (FTO) gene on adiposity is well established, there is a lack of evidence whether physical activity (PA) modifies the effect of FTO variants on obesity in Latino populations. Therefore, the purpose of this study was to examine PA influences and interactive

Background: Although the effect of the fat mass and obesity-associated (FTO) gene on adiposity is well established, there is a lack of evidence whether physical activity (PA) modifies the effect of FTO variants on obesity in Latino populations. Therefore, the purpose of this study was to examine PA influences and interactive effects between FTO variants and PA on measures of adiposity in Latinos.

Results: After controlling for age and sex, participants who did not engage in regular PA exhibited higher BMI, fat mass, HC, and WC with statistical significance (P < 0.001). Although significant associations between the three FTO genotypes and adiposity measures were found, none of the FTO genotype by PA interaction assessments revealed nominally significant associations. However, several of such interactive influences exhibited considerable trend towards association.

Conclusions: These data suggest that adiposity measures are associated with PA and FTO variants in Latinos, but the impact of their interactive influences on these obesity measures appear to be minimal. Future studies with large sample sizes may help to determine whether individuals with specific FTO variants exhibit differential responses to PA interventions.

ContributorsKim, Joon Young (Author) / DeMenna, Jacob (Author) / Puppala, Sobha (Author) / Chittoor, Geetha (Author) / Schneider, Jennifer (Author) / Duggirala, Ravindranath (Author) / Mandarino, Lawrence (Author) / Shaibi, Gabriel (Author) / Coletta, Dawn (Author) / College of Health Solutions (Contributor)
Created2016-02-24