Matching Items (155)
Filtering by

Clear all filters

136153-Thumbnail Image.png
Description
Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and

Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and the length of usability of gesture-driven devices, defined low-stress and intuitive gestures for users to interact with gesture recognition systems are necessary to consider. To measure stress, a Galvanic Skin Response instrument was used as a primary indicator, which provided evidence of the relationship between stress and intuitive gestures, as well as user preferences towards certain tasks and gestures during performance. Fifteen participants engaged in creating and performing their own gestures for specified tasks that would be required during the use of free-space gesture-driven devices. The tasks include "activation of the display," scroll, page, selection, undo, and "return to main menu." They were also asked to repeat their gestures for around ten seconds each, which would give them time and further insight of how their gestures would be appropriate or not for them and any given task. Surveys were given at different time to the users: one after they had defined their gestures and another after they had repeated their gestures. In the surveys, they ranked their gestures based on comfort, intuition, and the ease of communication. Out of those user-ranked gestures, health-efficient gestures, given that the participants' rankings were based on comfort and intuition, were chosen in regards to the highest ranked gestures.
ContributorsLam, Christine (Author) / Walker, Erin (Thesis director) / Danielescu, Andreea (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor) / School of Arts, Media and Engineering (Contributor) / Department of English (Contributor) / Computing and Informatics Program (Contributor)
Created2015-05
136004-Thumbnail Image.png
Description
This is a study of the adaptive behaviors of individuals with Autism Spectrum Disorder using the Vineland II Adaptive Behavioral Scale (VABS-II). This scale was used to determine the overall functioning level of individuals with Autism Spectrum Disorder at the beginning, and will be used at the end, of a

This is a study of the adaptive behaviors of individuals with Autism Spectrum Disorder using the Vineland II Adaptive Behavioral Scale (VABS-II). This scale was used to determine the overall functioning level of individuals with Autism Spectrum Disorder at the beginning, and will be used at the end, of a year-long study beginning at Arizona State University. This larger study is determining what the effects are, if any, of a combination of nutritional and dietary treatments in individuals with Autism Spectrum Disorder. However, this paper only examines the VABS-II results of forty-three participants in the study, as well as their hand-grip strength. It was found that individuals with Autism Spectrum Disorder are substantially delayed in all four domains (communication, daily living skills, social skills, and motor skills) of adaptive behaviors measured by the VABS-II, particularly in communication. This study will be completed in May 2013, when it will be determined what the effects of these treatments are, if any.
ContributorsAdams, Rebecca (Author) / Ingram-Waters, Mary (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / Pollard, Elena (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
137712-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated

Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated aquifer in San Diego. These series of treatability studies were also performed to prepare data and mature packed sediment columns for the deployment of the In Situ Microcosm Array (ISMA), a diagnostic device for determining optimal treatments for a contaminated aquifer, at this particular site. First, a control panel for the ISMA’s Injection Module (IM) was created in order to deliver nutrients to the columns. Then, a column treatability study was performed in order to produce columns with an established KB-1® consortium, so that all TCE in the column influent was converted to ethene by the time it had exited the column. Finally, a batch bottle treatability study was performed to determine KB-1®’s effectiveness at remediating both TCE and Cr(VI) from the San Diego ground-water samples. The results from the column study found that KB-1® was able to reduce TCE in mineral media. However, in the presence of site ground-water for the batch bottle study, KB-1® was only able to reduce Cr(VI) and no TCE dechlorination was observed. This result suggests that the dechlorinating culture cannot survive prolonged exposure to Cr(VI). Therefore, future work may involve repeating the batch bottle study with Cr(VI) removed from the groundwater prior to inoculation to determine if KB-1® is then able to dechlorinate TCE.
ContributorsDuong, Benjamin Taylor (Author) / Halden, Rolf (Thesis director) / Torres, Cesar (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Dance (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137817-Thumbnail Image.png
Description
G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs

G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs that currently provide healthcare facilities in developing countries. The market size for healthcare aid in developing countries is estimated to be $1.7 billion. The plan also analyses the customer's value chain and buying cycle by using voice of the customer data. The strategic position analysis profiles G3Box's competition and discusses the company's differential advantage versus other options for healthcare facilities in developing countries. Next the document discusses G3Box's market strategy and implementation, along with outlining a value proposition for the company. G3Box has two objectives for 2013: 1) Increase sales revenue to $1.3 million and 2) increase market presence to 25%. In order to reach these objectives, G3Box has developed a primary and secondary strategic focus for each objective. The primary strategies are relationship selling and online marketing. The secondary strategies are developing additional value-added activities and public relations.
ContributorsWalters, John (Author) / Denning, Michael (Thesis director) / Ostrom, Lonnie (Committee member) / Carroll, James (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137819-Thumbnail Image.png
Description
The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial

The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial viability of the system installations as well as the purchase price. The research was conducted using PPAs and historical solar power production data from the ASU's Energy Information System (EIS). The results indicate that most PPAs slightly underestimate the annual energy yield. However, the modeled power output from PVsyst indicates that higher energy outputs are possible with better system monitoring.
ContributorsVulic, Natasa (Author) / Bowden, Stuart (Thesis director) / Bryan, Harvey (Committee member) / Sharma, Vivek (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137820-Thumbnail Image.png
Description
The 21st century engineer will face a diverse set of challenges spread out along a broad spectrum of disciplines. Among others, the fields of energy, healthcare, cyberspace, virtual reality, and neuroscience require monumental efforts by the new generation of engineers to meet the demands of a growing society. However the

The 21st century engineer will face a diverse set of challenges spread out along a broad spectrum of disciplines. Among others, the fields of energy, healthcare, cyberspace, virtual reality, and neuroscience require monumental efforts by the new generation of engineers to meet the demands of a growing society. However the most important, and likely the most under recognized, challenge lies in developing advanced personalized learning. It is the core foundation from which the rest of the challenges can be accomplished. Without an effective method of teaching engineering students how to realize these grand challenges, the knowledge pool from which to draw new innovations and discoveries will be greatly diminished. This paper introduces the Inventors Workshop (IW), a hands-on, passion-based approach to personalized learning. It is intended to serve as a manual that will inform the next generation of student leaders and inventioneers about the core concepts the Inventors Workshop was built upon, and how to continue improvement into the future. Due to the inherent complexities in the grand challenge of personalized learning, the IW has developed a multifaceted solution that is difficult to explain in a single phrase. To enable comprehension of the IW's full vision, the process undergone to date of establishing and expanding the IW is described. In addition, research has been conducted to determine a variety of paths the Inventors Workshop may utilize in future expansion. Each of these options is explored and related to the core foundations of the IW to assist future leaders and partners in effectively improving personalized learning at ASU and beyond.
ContributorsEngelhoven, V. Logan (Author) / Burleson, Winslow (Thesis director) / Peck, Sidnee (Committee member) / Fortun, A. L. Cecil (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137835-Thumbnail Image.png
Description
Electrospun nanofibers can be prepared from various kinds of inorganic substances by electro-spinning techniques. They have great potential in many applications including super capacitors, lithium ion batteries, filtration, catalyst and enzyme carriers, and sensors [1]. The traditional way to produce electrospun nanofibers is needle based electro-spinning [1]. However, electrospun nanofibers

Electrospun nanofibers can be prepared from various kinds of inorganic substances by electro-spinning techniques. They have great potential in many applications including super capacitors, lithium ion batteries, filtration, catalyst and enzyme carriers, and sensors [1]. The traditional way to produce electrospun nanofibers is needle based electro-spinning [1]. However, electrospun nanofibers have not been widely used in practice because of low nanofiber production rates. One way to largely increase the electro-spinning productivity is needleless electro-spinning. In 2005, Jirsak et al. patented a rotating roller fiber generator for the mass production of nanofibers [2]. Elmarco Corporation commercialized this technique to manufacture nanofiber equipment for the production of all sorts of organic and inorganic nanofibers, and named it "NanospiderTM". For this project, my goal is to build a needleless electro-spinner to produce nanofibers as the separator of lithium ion batteries. The model of this project is based on the design of rotating roller fiber generator, and is adapted from a project at North Dakota State University in 2011 [3].
ContributorsQiao, Guanhao (Author) / Yu, Hongyu (Thesis director) / Jiang, Hanqing (Committee member) / Goryll, Michael (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137744-Thumbnail Image.png
Description
The effect of ammonium on microbial fermentation was investigated to improve the efficiency of microbial electrochemical cells (MXC). Electron balances of anaerobic microbial cultures with varying ammonium concentrations (reported as g N-NH4+/L) were used to study the distribution of electrons from different fermentable substrates to acetate, propionate, and methane. Results

The effect of ammonium on microbial fermentation was investigated to improve the efficiency of microbial electrochemical cells (MXC). Electron balances of anaerobic microbial cultures with varying ammonium concentrations (reported as g N-NH4+/L) were used to study the distribution of electrons from different fermentable substrates to acetate, propionate, and methane. Results showed that with a high ammonium concentration (between 2.25 to 3g N-NH4+/L) fewer electrons routed to methane during the fermentation of 300 me-eq./L of electron donors .The majority of electrons (~ 60-80%) in the serum bottles experiments were routed to acetate and propionate for all fermentable substrates with high ammonium concentration. While methane cannot be utilized by anode respiring bacteria (ARBs) to produce current, both acetate and propionate can, which could lead to higher Coulombic efficiencies in MXCs. Experiments in microbial electrolysis cells (MECs) with glucose, lactate, and ethanol were performed. MEC experiments showed low percentage of electrons to current (between 10-30 %), potentially due to low anode surface area (~ 3cm2) used during these experiments. Nevertheless, the fermentation process observed in the MECs was similar to serum bottles results which showed significant diversion of electrons to acetate and propionate (~ 80%) for a control concentration of 0.5 g N-NH4+/L .
ContributorsLozada Guerra, Suyana Patricia (Co-author) / Joseph, Miceli (Co-author) / Krajmalnik-Brown, Rosa (Thesis director) / Torres, Cesar (Committee member) / Young, Michelle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
136660-Thumbnail Image.png
Description
Lactate and methanol have been the most commonly used electron donors in the Krajmalnik-Brown laboratory for efficient microbial dechlorination of trichloroethene (TCE). Our goal was to assess the technical and economic feasibility of molasses and ethanol, two alternative electron donors by evaluating their costs and ability support complete TCE dechlorination

Lactate and methanol have been the most commonly used electron donors in the Krajmalnik-Brown laboratory for efficient microbial dechlorination of trichloroethene (TCE). Our goal was to assess the technical and economic feasibility of molasses and ethanol, two alternative electron donors by evaluating their costs and ability support complete TCE dechlorination to ethene. First, ethanol and molasses, with and without methanol, were evaluated for their abilities to support complete dechlorination in batch serum bottles. Molasses, the cheapest alternative, supported a similar dechlorination performance to lactate in batch experiments, so we then used it in an upflow anaerobic bioreactor (UABR) to test its ability to support rapid dechlorination in this continuous system. Molasses supported 88% TCE conversion to ethene at a hydraulic retention time (HRT) of 13 hours after 80 days of operation in continuous mode. Compared to the UABR operated previously using lactate and methanol, molasses led to a reduction of TCE conversion to ethene, and a possible increase in time required to produce culture. Additionally, when molasses was used as the electron donor, we encountered new difficulties in the operation of the UABR, such as drastic pH changes. Therefore, I conclude that the savings from using molasses is outweighed by the costs associated with the reduction in dechlorination performance and increase in reactor maintenance. I recommend that lactate and methanol continue to be used as the electron donors in the Krajmalnik- Brown dechlorination lab to support fast-rate and cost-effective production of dechlorinating culture in an UABR. Because molasses supported fast rates of dechlorination in the batch experiment, however, it is potentially a better option than lactate and methanol for batch production of culture or for biostimulation, where the aquifer resembles a batch system. I recommend that further studies be done to reach a general conclusion about the feasibility of molasses as an electron donor for other enhanced bioremediation projects.
ContributorsBondank, Emily Nicole (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / Torres, Cesar (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12