Matching Items (3,357)
Filtering by

Clear all filters

152019-Thumbnail Image.png
Description
In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the

In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the nonlinear and anharmonic regime in the normal phase of strange quark matter. We point out several qualitative effects due to the anharmonicity, although quantitatively they appear to be relatively small. In the corresponding study, we take into account the interplay between the non- leptonic and semileptonic weak processes. The results can be important in order to relate accessible observables of compact stars to their internal composition. We also use quantum field theoretical methods to study the transport properties in monolayer graphene in a strong magnetic field. The corresponding quasi-relativistic system re- veals an anomalous quantum Hall effect, whose features are directly connected with the spontaneous flavor symmetry breaking. We study the microscopic origin of Fara- day rotation and magneto-optical transmission in graphene and show that their main features are in agreement with the experimental data.
ContributorsWang, Xinyang, Ph.D (Author) / Shovkovy, Igor (Thesis advisor) / Belitsky, Andrei (Committee member) / Easson, Damien (Committee member) / Peng, Xihong (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2013
150890-Thumbnail Image.png
Description
Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this ga

Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this gap between simulation and observation by rendering the model output in image format which is then processed by tools commonly used in observational astronomy. Images are synthesized in various filters by folding the output of cosmological simulations of gasdynamics with star-formation and dark matter with the Bruzual- Charlot stellar population synthesis models. A variation of the Virgo-Gadget numerical simulation code is used with the hybrid gas and stellar formation models of Springel and Hernquist (2003). Outputs taken at various redshifts are stacked to create a synthetic view of the simulated star clusters. Source Extractor (SExtractor) is used to find groupings of stellar populations which are considered as galaxies or galaxy building blocks and photometry used to estimate the rest frame luminosities and distribution functions. With further refinements, this is expected to provide support for missions such as JWST, as well as to probe what additional physics are needed to model the data. The results show good agreement in many respects with observed properties of the galaxy luminosity function (LF) over a wide range of high redshifts. In particular, the slope (alpha) when fitted to the standard Schechter function shows excellent agreement both in value and evolution with redshift, when compared with observation. Discrepancies of other properties with observation are seen to be a result of limitations of the simulation and additional feedback mechanisms which are needed.
ContributorsMorgan, Robert (Author) / Windhorst, Rogier A (Thesis advisor) / Scannapieco, Evan (Committee member) / Rhoads, James (Committee member) / Gardner, Carl (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
150947-Thumbnail Image.png
Description
Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have

Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have written a "1.5-D" radiative transfer code to calculate disk temperatures assuming hydrostatic and radiative equilibrium. The model solves for the temperature at all locations simultaneously using Rybicki's method, converges rapidly at high optical depth, and retains full frequency dependence. The likely cause of accretional heating in PPDs is the magnetorotational instability (MRI), which acts where gas ionization is sufficiently high for gas to couple to the magnetic field. This will occur in surface layers of the disk, leaving the interior portions of the disk inactive ("dead zone"). I calculate temperatures in PPDs undergoing such "layered accretion." Since the accretional heating is concentrated far from the midplane, temperatures in the disk's interior are lower than in PPDs modeled with vertically uniform accretion. The method is used to study for the first time disks evolving via the magnetorotational instability, which operates primarily in surface layers. I find that temperatures in layered accretion disks do not significantly differ from those of "passive disks," where no accretional heating exists. Emergent spectra are insensitive to active layer thickness, making it difficult to observationally identify disks undergoing layered vs. uniform accretion. I also calculate the ionization chemistry in PPDs, using an ionization network including multiple charge states of dust grains. Combined with a criterion for the onset of the MRI, I calculate where the MRI can be initiated and the extent of dead zones in PPDs. After accounting for feedback between temperature and active layer thickness, I find the surface density of the actively accreting layers falls rapidly with distance from the protostar, leading to a net outward flow of mass from ~0.1 to 3 AU. The clearing out of the innermost zones is possibly consistent with the observed behavior of recently discovered "transition disks."
ContributorsLesniak, Michael V., III (Author) / Desch, Steven J. (Thesis advisor) / Scannapieco, Evan (Committee member) / Timmes, Francis (Committee member) / Starrfield, Sumner (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
150778-Thumbnail Image.png
Description
This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements

This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements presented here for the nuclei Chlorine ( 35Cl) and Aluminum ( 27Al ) are part of a program with the ultimate goal of measuring the asymmetry in the angular distribution of gamma rays emitted in the capture of neutrons on protons, with a precision better than 10-8, in order to extract the weak hadronic coupling constant due to pion exchange interaction with isospin change equal with one ( hπ 1). Based on theoretical calculations asymmetry in the angular distribution of the gamma rays from neutron capture on protons has an estimated size of 5·10-8. This implies that the Al parity violation asymmetry and its uncertainty have to be known with a precision smaller than 4·10-8. The proton target is liquid Hydrogen (H2) contained in an Aluminum vessel. Results are presented for parity violation and parity-conserving asymmetries in Chlorine and Aluminum. The systematic and statistical uncertainties in the calculation of the parity-violating and parity-conserving asymmetries are discussed.
ContributorsBalascuta, Septimiu (Author) / Alarcon, Ricardo (Thesis advisor) / Belitsky, Andrei (Committee member) / Doak, Bruce (Committee member) / Comfort, Joseph (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2012