Matching Items (2,827)
Filtering by

Clear all filters

133125-Thumbnail Image.png
Description

Project management is the crucial component for managing and mitigating the inherent risks associated with changes in technology and innovation. The procedures to track the schedule, budget, and scope of various projects in the standard worlds of engineering, manufacturing, construction, etc., are essential elements to the success of the project.

Project management is the crucial component for managing and mitigating the inherent risks associated with changes in technology and innovation. The procedures to track the schedule, budget, and scope of various projects in the standard worlds of engineering, manufacturing, construction, etc., are essential elements to the success of the project. Cost overruns, schedule changes, and other natural risks must be managed effectively. But what happens when a project manager is tasked with delivering an attraction that needs to withstand harsh weather conditions, and millions of people enjoying it every year, for a company with arguably the highest standards for quality and guest satisfaction? This would describe the project managers at Walt Disney Imagineering (WDI) and the projects they oversee have tight budgets, aggressive schedules and require a bit more pixie dust than other engineering projects. However, the universal truth is that no matter the size or the scope of the endeavor, project management processes are absolutely essential to ensuring that every team member can effectively collaborate to deliver the best product.

ContributorsBaker, Molly (Author) / McCarville, Daniel R. (Thesis director) / Juarez, Joseph (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
127956-Thumbnail Image.png
Description

In this study, a low-cycle fatigue experiment was conducted on printed wiring boards (PWB). The Weibull regression model and computational Bayesian analysis method were applied to analyze failure time data and to identify important factors that influence the PWB lifetime. The analysis shows that both shape parameter and scale parameter

In this study, a low-cycle fatigue experiment was conducted on printed wiring boards (PWB). The Weibull regression model and computational Bayesian analysis method were applied to analyze failure time data and to identify important factors that influence the PWB lifetime. The analysis shows that both shape parameter and scale parameter of Weibull distribution are affected by the supplier factor and preconditioning methods Based on the energy equivalence approach, a 6-cycle reflow precondition can be replaced by a 5-cycle IST precondition, thus the total testing time can be greatly reduced. This conclusion was validated by the likelihood ratio test of two datasets collected under two different preconditioning methods Therefore, the Weibull regression modeling approach is an effective approach for accounting for the variation of experimental setting in the PWB lifetime prediction.

ContributorsPan, Rong (Author) / Xu, Xinyue (Author) / Juarez, Joseph (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-12