Matching Items (44)
132726-Thumbnail Image.png
Description
Atomic force microscopy (AFM) was used to study structural differences in the chromatin of cancerous (CP-D) and non-cancerous (EPC2) cell lines. Chromatin samples were extracted using a salt fractionation protocol and subject to Mnase digestion for 2, 4, 8, and 16 minutes. Samples were then immobilized on APTES-functionalized mica

Atomic force microscopy (AFM) was used to study structural differences in the chromatin of cancerous (CP-D) and non-cancerous (EPC2) cell lines. Chromatin samples were extracted using a salt fractionation protocol and subject to Mnase digestion for 2, 4, 8, and 16 minutes. Samples were then immobilized on APTES-functionalized mica sheets. Images were produced using the tapping mode capabilities of the AFM and structural differences between cell lines were quantified using image processing software. Vast differences in chromatin structure were observed between cancerous and non-cancerous cell lines and it was discovered that CP-D chromatin is present as scattered nucleosomes and nucleosome aggregates while EPC2 chromatin is present in intricate arrays. It was also observed that in both the CP-D and EPC2 cell lines, nucleosomes were more isolated and less apparent at longer Mnase digestion times. These findings lead to the conclusion that as the DNA becomes sufficiently digested, chromatin and nucleosomal arrays begin to deteriorate and lose their complex and elaborate structure.
ContributorsPiper, Miles Jeffrey (Author) / Ros, Robert (Thesis director) / Lindsay, Stuart (Committee member) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
168759-Thumbnail Image.png
Description
Adsorption of fibrinogen on various surfaces, including biomaterials, dramatically reduces the adhesion of platelets and leukocytes. The mechanism by which fibrinogen renders surfaces non-adhesive is its surface-induced self-assembly leading to the formation of a nanoscale multilayer matrix. Under the applied tensile force exerted by cellular integrins, the fibrinogen matrix extends

Adsorption of fibrinogen on various surfaces, including biomaterials, dramatically reduces the adhesion of platelets and leukocytes. The mechanism by which fibrinogen renders surfaces non-adhesive is its surface-induced self-assembly leading to the formation of a nanoscale multilayer matrix. Under the applied tensile force exerted by cellular integrins, the fibrinogen matrix extends as a result of the separation of layers which prevents the transduction of strong mechanical forces, resulting in weak intracellular signaling and feeble cell adhesion. Furthermore, upon detachment of adherent cells, a weak association between fibrinogen molecules in the superficial layers of the matrix allows integrins to pull fibrinogen molecules out of the matrix. Whether the latter mechanism contributes to the anti-adhesive mechanism under the flow is unclear. In the present study, using several experimental flow systems, it has been demonstrated that various blood cells as well as model HEK293 cells expressing the fibrinogen receptors, were able to remove fibrinogen molecules from the matrix in a time- and cell concentration-dependent manner. In contrast, insignificant fibrinogen dissociation occurred in a cell-free buffer, and crosslinking fibrinogen matrix significantly reduced cell-mediated dissociation of adsorbed fibrinogen. Surprisingly, cellular integrins contributed minimally to fibrinogen dissociation since function-blocking anti-integrin antibodies did not significantly inhibit this process. In addition, erythrocytes that are not known to express functional fibrinogen receptors and naked liposomes caused fibrinogen dissociation, suggesting that the removal of fibrinogen from the matrix may be caused by nonspecific low-affinity interactions of cells with the fibrinogen matrix. These results indicate that the peeling effect exerted by flowing cells upon their contact with the fibrinogen matrix is involved in the anti-adhesive mechanism.
ContributorsMursalimov, Aibek (Author) / Ugarova, Tatiana (Thesis advisor) / Chandler, Douglas (Committee member) / Podolnikova, Nataly (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2022
127900-Thumbnail Image.png
Description

The process, how lipids are removed from the circulation and transferred from high density lipoprotein (HDL) – a main carrier of cholesterol in the blood stream – to cells, is highly complex. HDL particles are captured from the blood stream by the scavenger receptor, class B, type I (SR-BI), the

The process, how lipids are removed from the circulation and transferred from high density lipoprotein (HDL) – a main carrier of cholesterol in the blood stream – to cells, is highly complex. HDL particles are captured from the blood stream by the scavenger receptor, class B, type I (SR-BI), the so-called HDL receptor. The details in subsequent lipid-transfer process, however, have not yet been completely understood. The transfer has been proposed to occur directly at the cell surface across an unstirred water layer, via a hydrophobic channel in the receptor, or after HDL endocytosis. The role of the target lipid membrane for the transfer process, however, has largely been overlooked. Here, we studied at the single molecule level how HDL particles interact with synthetic lipid membranes. Using (high-speed) atomic force microscopy and fluorescence correlation spectroscopy (FCS) we found out that, upon contact with the membrane, HDL becomes integrated into the lipid bilayer. Combined force and single molecule fluorescence microscopy allowed us to directly monitor the transfer process of fluorescently labelled amphiphilic lipid probe from HDL particles to the lipid bilayer upon contact.

ContributorsPlochberger, Birgit (Author) / Rohrl, Clemens (Author) / Preiner, Johannes (Author) / Rankl, Christian (Author) / Brameshuber, Mario (Author) / Madl, Josef (Author) / Bittman, Robert (Author) / Ros, Robert (Author) / Sezgin, Erdinc (Author) / Eggeling, Christian (Author) / Hinterdorfer, Peter (Author) / Stangl, Herbert (Author) / Schutz, Gerhard J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-11-21
128557-Thumbnail Image.png
Description

Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy

Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

ContributorsStaunton, Jack (Author) / Doss, Bryant (Author) / Lindsay, Stuart (Author) / Ros, Robert (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-27