Matching Items (502)
Filtering by

Clear all filters

136546-Thumbnail Image.png
Description
The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding

The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding of human gait is limited by the amount of research we conduct in relation to human walking mechanisms and their characteristics. In order to better understand these characteristics and the systems involved in the generation of human gait, it is necessary to increase the depth and range of research pertaining to walking motion. Specifically, there has been a lack of investigation into a particular area of human gait research that could potentially yield interesting conclusions about gait rehabilitation, which is the effect of surface stiffness on human gait. In order to investigate this idea, a number of studies have been conducted using experimental devices that focus on changing surface stiffness; however, these systems lack certain functionality that would be useful in an experimental scenario. To solve this problem and to investigate the effect of surface stiffness further, a system has been developed called the Variable Stiffness Treadmill system (VST). This treadmill system is a unique investigative tool that allows for the active control of surface stiffness. What is novel about this system is its ability to change the stiffness of the surface quickly, accurately, during the gait cycle, and throughout a large range of possible stiffness values. This type of functionality in an experimental system has never been implemented and constitutes a tremendous opportunity for valuable gait research in regard to the influence of surface stiffness. In this work, the design, development, and implementation of the Variable Stiffness Treadmill system is presented and discussed along with preliminary experimentation. The results from characterization testing demonstrate highly accurate stiffness control and excellent response characteristics for specific configurations. Initial indications from human experimental trials in relation to quantifiable effects from surface stiffness variation using the Variable Stiffness Treadmill system are encouraging.
ContributorsBarkan, Andrew Robert (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136548-Thumbnail Image.png
Description
The value of data in the construction industry is driven by the actual worth or usefulness the data can provide. The revolutionary method of Best Value Performance Information Procurement System implemented into the industry by the Performance Based Studies Research Group at ASU optimizes the value of data. By simplifying

The value of data in the construction industry is driven by the actual worth or usefulness the data can provide. The revolutionary method of Best Value Performance Information Procurement System implemented into the industry by the Performance Based Studies Research Group at ASU optimizes the value of data. By simplifying the details and complexity of a construction project through dominant and logical thinking, the Best Value system delivers efficient, non-risk success. The Best Value model's implementation into industry projects is observed in the PBSRG Minnesota projects in order to improve data collection and metric analysis. The Minnesota projects specifically have an issue with delivering Best Value transparency, the notion that the details of project data should be used to support dominant ideas. By improving and simplifying the data collection tools of PBSRG, Best Value transparency can be achieved more easily and effective, in turn improved the Best Value system.
ContributorsMisiak, Erik Richard (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136446-Thumbnail Image.png
Description
Over the past several years, there has been growing concern regarding concussions and traumatic brain injuries (TBIs) in all levels of sports. A concussion is a traumatic brain injury that occurs from a blow to the head. When a concussion occurs, the brain knocks against the walls of the skull.

Over the past several years, there has been growing concern regarding concussions and traumatic brain injuries (TBIs) in all levels of sports. A concussion is a traumatic brain injury that occurs from a blow to the head. When a concussion occurs, the brain knocks against the walls of the skull. A concussion causes temporary loss of brain function leading to cognitive, physical, and emotional symptoms, such as confusion, vomiting,headache, nausea,depression, disturbed sleep, moodiness, and amnesia. Although the short-term effects of concussions are limited, the long-term effects of concussions, if untreated, can be devastating and even life-threatening. Concussions are having detrimental ramifications on society and it is important to know what these ramifications are. Concussions are a common occurrence in traditional physical sports such as soccer, basketball, and football. However, due to the violent nature of football (American football), concussions are more prevalent and the effects are more severe. Changes to rules and equipment, specifically helmets, have been made to reduce head impacts in football but there is not currently enough evidence to conclude that they significantly lessen the frequency and severity of concussions.
ContributorsLaughlin, Riley James (Author) / Squires, Kyle (Thesis director) / Shrake, Scott (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136455-Thumbnail Image.png
Description
Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism

Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism that was first cited in literature decades ago but not much is understood about it even today. The cause of this mode of failure results from the initiation of white etched cracks (WECs). In this report, different failure mechanisms, especially premature failure mechanisms that were tested and analyzed are demonstrated as a pathway to understanding this phenomenon. Through the use of various tribometers, samples were tested in diverse and extreme conditions in order to study the effect of these different operational conditions on the specimen. Analysis of the tested samples allowed for a comparison of the microstructure alterations in the tested samples to the field bearings affected by WSF.
ContributorsSharma, Aman (Author) / Foy, Joseph (Thesis director) / Adams, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136679-Thumbnail Image.png
Description
Measuring the dynamic strength of a material based on stress and strain data is challenging due to the diculty in recording strain and stress under the short times and large loads typical of dynamic events, such as impact and shock loading. The research involved in this study aims to perform

Measuring the dynamic strength of a material based on stress and strain data is challenging due to the diculty in recording strain and stress under the short times and large loads typical of dynamic events, such as impact and shock loading. The research involved in this study aims to perform nite element simulations for a new experimental method that can provide information on material dynamic strength, which is crucial for many engineering applications. In this method, a shock wave is applied to a metallic sample with a perturbed surface, i.e, one with periodic ripples machined or etched on the surface. The speed and magnitude of the change of am- plitude of the ripples are recorded. It is known that these parameters are functions of both geometry and material strength. The experimental data are compared with the simulation results produced. The dynamic yield strength of a material is taken to be the same as the strength used in simulations when a close match is found. The simulations have produced results that closely matched the experimental data and predicted the dynamic yield strength of metallic samples and have led to the discov- ery of a new experimental technique to lower the impact velocity required to induce amplitude changes in surface perturbations under shock loading. Thus, shock experi- ments to measure strength using surface perturbations will become easier to conduct and span a wider range of conditions. However, the existing simulation models are not adequate to examine the relations among hardening behavior and the change of amplitude and velocity on the sample surface. Thus, the models should be further modied to study dierent material hardening behaviors under dynamic loadings.
ContributorsChen, Yan (Author) / Peralta, Pedro (Thesis director) / Oswald, Jay (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-12
136680-Thumbnail Image.png
Description
Understanding damage evolution, particularly as it relates to local nucleation and growth kinetics of spall failure in metallic materials subjected to shock loading, is critical to national security. This work uses computational modeling to elucidate what characteristics have the highest impact on damage localization at the microstructural level in metallic

Understanding damage evolution, particularly as it relates to local nucleation and growth kinetics of spall failure in metallic materials subjected to shock loading, is critical to national security. This work uses computational modeling to elucidate what characteristics have the highest impact on damage localization at the microstructural level in metallic materials, since knowledge of these characteristics is critical to improve these materials. The numerical framework consists of a user-defined material model implemented in a user subroutine run in ABAQUS/Explicit that takes into account crystal plasticity, grain boundary effects, void nucleation and initial growth, and both isotropic and kinematic hardening to model incipient spall. Finite element simulations were performed on copper bicrystal models to isolate the boundary effects between two grains. Two types of simulations were performed in this work: experimentally verified cases in order to validate the constitutive model as well as idealized cases in an attempt to determine the microstructural characteristic that define weakest links in terms of spall damage. Grain boundary effects on damage localization were studied by varying grain boundary orientation in respect to the shock direction and the crystallographic properties of each grain in the bicrystal. Varying these parameters resulted in a mismatch in Taylor factor across the grain boundary and along the shock direction. The experimentally verified cases are models of specific damage sites found from flyer plate impact tests on copper multicrystals in which the Taylor factor mismatch across the grain boundary and along the shock direction are both high or both low. For the idealized cases, grain boundary orientation and crystallography of the grains are chosen such that the Taylor factor mismatch in the grain boundary normal and along the shock direction are maximized or minimized. A perpendicular grain boundary orientation in respect to the shock direction maximizes Taylor factor mismatch, while a parallel grain boundary minimizes the mismatch. Furthermore, it is known that <1 1 1> crystals have the highest Taylor factor, while <0 0 1> has nearly the lowest Taylor factor. The permutation of these extremes for mismatch in the grain boundary normal and along the shock direction results in four idealized cases that were studied for this work. Results of the simulations demonstrate that the material model is capable of predicting damage localization, as it has been able to reproduce damage sites found experimentally. However, these results are qualitative since further calibration is still required to produce quantitatively accurate results. Moreover, comparisons of results for void nucleation rate and void growth rate suggests that void nucleation is more influential in the total void volume fraction for bicrystals with high property mismatch across the interface, suggesting that nucleation is the dominant characteristic in the propagation of damage in the material. Further work in recalibrating the simulation parameters and modeling different bicrystal orientations must be done to verify these results.
ContributorsVo, Johnathan Hiep (Author) / Peralta, Pedro (Thesis director) / Oswald, Jay (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-12
136499-Thumbnail Image.png
Description
In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power consumption, which has the potential to realize ultra-low-power-consumption electronics. Recently, thermal effects in magnetic materials have attracted a great deal

In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power consumption, which has the potential to realize ultra-low-power-consumption electronics. Recently, thermal effects in magnetic materials have attracted a great deal of attention because of its potential to generate pure spin currents using a thermal gradient (∇T), such as the spin Seebeck effect. However, unlike electric potential, the exact thermal gradient direction is experimentally difficult to control, which has already caused misinterpretation of the thermal effects in Py and Py/Pt films. In this work, we show that a well-defined ∇T can be created by two thermoelectric coolers (TECs) based on Peltier effect. The ∇T as well as its sign can be accurately controlled by the driven voltage on the TECs. Using a square-wave driven potential, thermal effects of a few μV can be measured. Using this technique, we have measured the anomalous Nernst effect in magnetic Co/Py and Py/Pt layers and determined their angular dependence. The angular dependence shows the same symmetry as the anomalous Hall effect in these films.
This work has been carried out under the guidance of the author’s thesis advisor, Professor Tingyong Chen.
ContributorsSimaie, Salar (Author) / Chen, Tingyon (Thesis director) / Alizadeh, Iman (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Physics (Contributor)
Created2015-05
136510-Thumbnail Image.png
Description
This thesis focused on the development of a system that can sense light intensity and then control a smart film to provide the optimal light intensity for cyanobacteria. The overarching goal of this project is to further the study of biofuels as an alternative energy source by increasing growth rates.

This thesis focused on the development of a system that can sense light intensity and then control a smart film to provide the optimal light intensity for cyanobacteria. The overarching goal of this project is to further the study of biofuels as an alternative energy source by increasing growth rates. If more algae or cyanobacteria can be grown per day, then the cost to produce the biofuel will decrease. To achieve this goal, PDLC (polymer dispersed liquid crystal) film was selected to be controlled due to its unique properties. It can be controlled with electricity and has variable states, in other words, not restricted to simply on or off. It also blocks 80% ultraviolet light and reduces thermal heat gain by 40% which is an important consideration for outdoor growing situations. To control the film, a simple control system was created using an Arduino Uno, SainSmart 8 channel relay board, an inverter, and a power supply. A relay board was utilized to manage the 40 volts required by the PDLC film and protected the electronics on the Arduino Uno. To sense the light intensity, the Arduino Uno was connected to a photoresistor, which changes resistance with light intensity. A 15 day test of two flasks of Cyanobacteria Synechocycstis sp. 6803, one shaded by the PDLC film, and the other unshaded, yielded 65% difference in optical densities. Overall, the experiment showed promise for controlling light intensity for photobioreactors. Ideally, this research will help to optimize light intensities when growing cyanobacteria or algae outdoors or it will help to discover what an ideal light intensity is by allowing a researcher unprecedented control.
ContributorsRoney, Kitt Alicia (Author) / Nielsen, David (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136518-Thumbnail Image.png
Description
3D printing has recently become a popular manufacturing process and the goal of the project was to take that process to the kitchen. This was done by utilizing existing knowledge of the culinary process of "spherification", by which a liquid is encapsulated in an edible shell, and combining it with

3D printing has recently become a popular manufacturing process and the goal of the project was to take that process to the kitchen. This was done by utilizing existing knowledge of the culinary process of "spherification", by which a liquid is encapsulated in an edible shell, and combining it with the hydrogel research advancements in tissue engineering to make robust fibers. A co-flow nozzle was constructed and the two fluids needed for spherification were flowed in various configurations to create different fibers. By outlining a stability regime and measuring the outer diameters for both regular and reverse spherification, the optimal method of production and fibers that would be suitable for 3D printing were discovered. The results of the experiments can be used to begin 3D printing edible 2D patterns and eventually 3D structures.
ContributorsSchott, Christopher David (Author) / Rykaczewski, Konrad (Thesis director) / Herrmann, Marcus (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136525-Thumbnail Image.png
Description
The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two

The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two spool gas turbine engine. The code was then compared to an ideal case engine with predictable values. It was found to have less than a 3 percent error for these parameters, which included optimal net work produced, optimal overall pressure ratio, and maximum pressure ratio. The modeling system was then run through a parametric analysis. In the first case, the bypass ratio was set to 0 and the freestream Mach number was set to 0. The second case was with a bypass ratio of 0 and fresstream Mach number of 0.85. The third case was with a bypass ratio of 5 and freestream Mach number of 0. The fourth case was with a bypass ratio of 5 and fresstream Mach number of 0.85. Each of these cases was run at various overall pressure ratios and maximum Temperatures of 1500 K, 1600 K and 1700 K. The results modeled the behavior that was expected. As the freestream Mach number was increased, the thrust decreased and the thrust specific fuel consumption increased, corresponding to an increase in total pressure at the combustor inlet. It was also found that the thrust was increased and the thrust specific fuel consumption decreased as the bypass ratio was increased. These results also make sense as there is less airflow passing through the engine core. Finally the engine was compared to two real engines. Both of which are General Electric G6 series engines. For the 80C2A3 engine, the percent difference between thrust and thrust specific fuel consumption was less than five percent. For the 50B, the thrust was below a two percent difference, but the thrust specific fuel consumption clearly provided inaccurate results. This could be caused by the lack of inputs provided by General Electric. The amount of fuel injected is largely dependent on the maximum temperature which is not available to the public. Overall, the code produces comparable results to real engines and can display how isolating and modifying a certain parameter effects engine performance.
ContributorsCook, Rachel Nicole (Author) / Dahm, Werner (Thesis director) / Lee, Taewoo (Committee member) / Wells, Valana (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05