Matching Items (301)
136570-Thumbnail Image.png
Description
The R-specific alcohol dehydrogenase (RADH or LVIS_0347) from Lactobacillus brevis LB19 was found to possess activity on several short chain aldehydes and ketones. This broad substrate specificity was previously uncharacterized. To demonstrate its relevance to the biofuels industry as well as its broader utility for chiral reductions, a detailed characterization

The R-specific alcohol dehydrogenase (RADH or LVIS_0347) from Lactobacillus brevis LB19 was found to possess activity on several short chain aldehydes and ketones. This broad substrate specificity was previously uncharacterized. To demonstrate its relevance to the biofuels industry as well as its broader utility for chiral reductions, a detailed characterization was performed to further investigate the activity and function of RADH.
ContributorsHalloum, Ibrahim (Co-author) / Pugh, Shawn (Co-author) / Nielsen, David R. (Thesis director) / Rege, Kaushal (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
Description
A niche group of non-traditional sports have grown in popularity over the course of most of the last century but especially in the last few decades. Adventure sports provide alternative forms of physical activity typically involving elements of nature, speed, adrenaline, and physical risk. These sports often take place in

A niche group of non-traditional sports have grown in popularity over the course of most of the last century but especially in the last few decades. Adventure sports provide alternative forms of physical activity typically involving elements of nature, speed, adrenaline, and physical risk. These sports often take place in remote locations, require specialized equipment, and receive limited exposure to those that are not participants. There are many factors that contribute to limited participation within adventure sports but their popularity has continued to grow. Participants frequently devote much of their time, effort, and money showing a true passion for their sport. A case study on water skiers was performed to learn more about adventure sports and their participants. A detailed description of competitive water skiing is included because the competition format is not widely known. It was found that there are a number of reasons why people competitively water ski. The main ones are the unique sensations it offers, the water ski community, and the environment in which it takes place. It is a tough sport to become involved because of the costs, time commitments, access to lakes, and lack of knowledgeable skiers willing to mentor beginners. Although for different reasons, all respondents seemed to truly love the sport. People participate in adventure sports because of the unique aspects and opportunities involved with sports of this nature. The second portion is a coaching guide on all three events, driving, and judging including video examples of all but very high difficulty tricks. These tips and advice have been derived from fifteen years of experience with competitive water skiing. There is no single way to water ski but this is what one skier has found to help at each stage of improvement. It could not have been accomplished without the unimaginable amount of support received from family, coaches, and friends. It is always better to be watched by a coach but that is not always possible. This guide will give skiers a starting point for what to think about to help them figure out how to continue to improve in all three events. With the necessary time, resources, ambition, and circumstances; a small group of people who know nothing about water skiing could learn to become high performance competitors. It will be left with Sun Devil Water Ski Club to help future skiers who do not always have another skier to help teach them.
ContributorsMechler, Mason Charles (Author) / Chhetri, Nalini (Thesis director) / Yesenski, Tara (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136483-Thumbnail Image.png
Description
The research objective is to maintain the A4 nanobody stability during dialysis. Various dialysis buffers were tested and compared, including PBS with varying amounts of the detergent, Tween: low, high, none. Furthermore, PBS, Tris, and HEPES, were tested and compared. PBS without Tween was the worst for preserving A4 stability.

The research objective is to maintain the A4 nanobody stability during dialysis. Various dialysis buffers were tested and compared, including PBS with varying amounts of the detergent, Tween: low, high, none. Furthermore, PBS, Tris, and HEPES, were tested and compared. PBS without Tween was the worst for preserving A4 stability. PBS was determined to be a better dialysis buffer than Tris or HEPES. To find the optimum buffer, other buffers will be tested and compared with PBS; methods such as gravity filtration and lyophilization will be considered as alternatives to dialysis.
ContributorsTao, Kevin Huang (Author) / Sierks, Michael (Thesis director) / Williams, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136486-Thumbnail Image.png
Description
This study was conducted to better understand the making and measuring of renewable energy goals by the federal government. Three different energy types are studied: wind, solar, and biofuel, for two different federal departments: the Department of Defense and the Department of Energy. A statistical analysis and a meta-analysis of

This study was conducted to better understand the making and measuring of renewable energy goals by the federal government. Three different energy types are studied: wind, solar, and biofuel, for two different federal departments: the Department of Defense and the Department of Energy. A statistical analysis and a meta-analysis of current literature will be the main pieces of information. These departments and energy types were chosen as they represent the highest potential for renewable energy production. It is important to understand any trends in goal setting by the federal government, as well as to understand what these trends represent in terms of predicting renewable energy production. The conclusion for this paper is that the federal government appears to set high goals for renewable energy initiatives. While the goals appear to be high, they are designed based on required characteristics described by the federal government. These characteristics are most often technological advancements, tax incentives, or increased production, with tax incentives having the highest priority. However, more often than not these characteristics are optimistic or simply not met. This leads to the resetting of goals before any goal can be evaluated, making it difficult to determine the goal-setting ability of the federal government.
ContributorsStapleton, Andrew (Co-author) / Charnell, Matthew (Co-author) / Printezis, Antonios (Thesis director) / Kull, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
136674-Thumbnail Image.png
Description
As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable.

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.
ContributorsAllen, Jason Kenneth (Author) / Ghirlanda, Giovanna (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-12
136494-Thumbnail Image.png
Description
The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be

The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be able to withstand these harsh conditions due the incorporation of a resilient impermeable polymer layer that will be cast above the lower hydrophilic layer. Nanoparticles called zeolites will act as a water selective pathway through this impermeable layer and allow water to flow through the membrane. This membrane will be made using a variety of methods and polymers to determine both the cheapest and most effective way of creating this chemical resistant membrane. If this research is successful, many more water sources can be tapped since the membranes will be able to withstand hard conditions. This document is primarily focused on our progress on the development of a highly permeable polymer-zeolite film that makes up the bottom layer of the membrane. Multiple types of casting methods were investigated and it was determined that spin coating at 4000 rpm was the most effective. Based on a literature review, we selected silicalite-1 zeolites as the water-selective nanoparticle component dispersed in a casting solution of polyacrylonitrile in N-methylpyrrolidinone to comprise this hydrophilic layer. We varied the casting conditions of several simple solution-casting methods to produce thin films on the porous substrate with optimal film properties for our membrane design. We then cast this solution on other types of support materials that are more flexible and inexpensive to determine which combination resulted in the thinnest and most permeable film.
ContributorsHerrera, Sofia Carolina (Author) / Lind, Mary Laura (Thesis director) / Khosravi, Afsaneh (Committee member) / Hestekin, Jamie (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136515-Thumbnail Image.png
Description
Tri-layer lithium ion battery separators were synthesized by dip-coating macroporous YSZ and mesoporous sol-gel derived gamma-alumina films onto porous polypropylene. These separators were installed into coin-cell lithium ion batteries and subjected to charge/discharge cycle testing to determine specific capacity. The gamma-alumina coated separators exhibited low capacity, while the YSZ coated

Tri-layer lithium ion battery separators were synthesized by dip-coating macroporous YSZ and mesoporous sol-gel derived gamma-alumina films onto porous polypropylene. These separators were installed into coin-cell lithium ion batteries and subjected to charge/discharge cycle testing to determine specific capacity. The gamma-alumina coated separators exhibited low capacity, while the YSZ coated separators failed immediately. Investigation by SEM and a surface wettability test indicated that the gamma alumina and YSZ coatings exhibited low wettability, and the YSZ coating exhibited low porosity. These factors resulted in high internal resistance of the battery, due to electrolyte failing to permeate the separator and provide transport of lithium ions between the electrodes.
ContributorsMcafee, Paul Milton (Author) / Lin, Jerry Y.S. (Thesis director) / Kasik, Alexandra (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
Description
This document outlines the research work done by Shona Becwar in the process design and refinement for the production of sustainable butanol from Clostridium, along with the required background knowledge on the subject. The process that the microbiological organisms go through to produce butanol must be an oxygen free environment

This document outlines the research work done by Shona Becwar in the process design and refinement for the production of sustainable butanol from Clostridium, along with the required background knowledge on the subject. The process that the microbiological organisms go through to produce butanol must be an oxygen free environment for up to 21 days with multiple perforations made into the environment in this period. There was not previously a cost effective method to do this, even in small scale. It was determined that using a butyl rubber septa would allow for the environment to be sustained during the growth process. The pervaporation process was losing butanol product at a rate of approximately 60%, changing the tubing from silicon to stainless steel allowed for a mere 7% loss during the separation process, greatly increasing the prospective of upscaling this process. These improvements to the sustainable butanol production process will allow for a more efficient, therefore more economically competitive product which can be used as a drop in equivalent to the current butanol market.
ContributorsBecwar, Shona Marie (Author) / Nielsen, David R. (Thesis director) / Staggs, Kyle (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136123-Thumbnail Image.png
Description
Capnography is the monitoring of concentrations of carbon dioxide in exhaled breath. It allows reliable insight into patients' metabolism, ventilation, and blood circulation. Capnography has become an integral part of anesthesiology monitoring in operating rooms. However, its used is limited in other contexts due to deeply engrained protocols, size of

Capnography is the monitoring of concentrations of carbon dioxide in exhaled breath. It allows reliable insight into patients' metabolism, ventilation, and blood circulation. Capnography has become an integral part of anesthesiology monitoring in operating rooms. However, its used is limited in other contexts due to deeply engrained protocols, size of capnographs, and the complexity of its interpretation. Intensive care units and in-home use could greatly benefit by a widespread usage of capnographs. Measuring methods include infrared spectroscopy, mass spectroscopy, and chemical colorimetric analysis. Infrared technology is currently the most widely used and cost-effective method for measuring carbon dioxide. However, this device can be bulky and costly. A novel portable breath CO2 analyzer was developed for this purpose. The analyzer features an accurate colorimetric CO2 sensor that can analyze ETCO2 in real time. Many advancements have been in made in the sensor fabrication process. Nevertheless, research on optimal packaging conditions and accelerated aging times have been limited. In this experiment, carbon dioxide sensors were packaged at four different environmental conditions to test their long-term stability. This was done to determine if these conditions had an effect on sensor degradation. In the second part of the experiment, a separate batch of sensors was placed inside an oven at 48 oC to investigate the effect of stabilization temperature dependence and accelerated aging. In conclusion, the data obtained from the sensors packaged at different conditions could not be concluded to be statistically different. Sensors packaged at ambient conditions had the highest average value at 0.45030 V and the ones at controlled 33% humidity had the lowest at 0.39348 V. The sensors packaged at 8.25% CO2 had the smallest variance in their voltage measurements. From these data, it can be concluded that environmental testing conditions had the greatest effect on the measured signal. The oven experiment showed that sensors rapidly stabilize at high temperature and these stay constant after reaching this stabilization. For future work, the signal difference at different environmental conditions should be done. Control of environmental conditions can be achieved by building a glove box to control temperature and humidity.
ContributorsCorral Clayton, Javier Alfonso (Author) / Forzani, Erica (Thesis director) / Tsow, Tsing (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2015-05