Matching Items (68)
153487-Thumbnail Image.png
Description
Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL,

Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL, browsers like Mozilla Firefox and Google Chrome display an 'active' warning message in an attempt to stop the user from making a potentially dangerous decision of visiting the website and sharing confidential information like username-password, credit card information, social security number etc.

However, these warnings are not always successful at safeguarding the user from a phishing attack. On several occasions, users ignore these warnings and 'click through' them, eventually landing at the potentially dangerous website and giving away confidential information. Failure to understand the warning, failure to differentiate different types of browser warnings, diminishing trust on browser warnings due to repeated encounter are some of the reasons that make users ignore these warnings. It is important to address these factors in order to eventually improve a user’s reaction to these warnings.

In this thesis, I propose a novel design to improve the effectiveness and reliability of phishing warning messages. This design utilizes the name of the target website that a fake website is mimicking, to display a simple, easy to understand and interactive warning message with the primary objective of keeping the user away from a potentially spoof website.
ContributorsSharma, Satyabrata (Author) / Bazzi, Rida (Thesis advisor) / Walker, Erin (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2015
150212-Thumbnail Image.png
Description
This thesis addresses the problem of online schema updates where the goal is to be able to update relational database schemas without reducing the database system's availability. Unlike some other work in this area, this thesis presents an approach which is completely client-driven and does not require specialized database management

This thesis addresses the problem of online schema updates where the goal is to be able to update relational database schemas without reducing the database system's availability. Unlike some other work in this area, this thesis presents an approach which is completely client-driven and does not require specialized database management systems (DBMS). Also, unlike other client-driven work, this approach provides support for a richer set of schema updates including vertical split (normalization), horizontal split, vertical and horizontal merge (union), difference and intersection. The update process automatically generates a runtime update client from a mapping between the old the new schemas. The solution has been validated by testing it on a relatively small database of around 300,000 records per table and less than 1 Gb, but with limited memory buffer size of 24 Mb. This thesis presents the study of the overhead of the update process as a function of the transaction rates and the batch size used to copy data from the old to the new schema. It shows that the overhead introduced is minimal for medium size applications and that the update can be achieved with no more than one minute of downtime.
ContributorsTyagi, Preetika (Author) / Bazzi, Rida (Thesis advisor) / Candan, Kasim S (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011
150895-Thumbnail Image.png
Description
Broadcast Encryption is the task of cryptographically securing communication in a broadcast environment so that only a dynamically specified subset of subscribers, called the privileged subset, may decrypt the communication. In practical applications, it is desirable for a Broadcast Encryption Scheme (BES) to demonstrate resilience against attacks by colluding, unprivileged

Broadcast Encryption is the task of cryptographically securing communication in a broadcast environment so that only a dynamically specified subset of subscribers, called the privileged subset, may decrypt the communication. In practical applications, it is desirable for a Broadcast Encryption Scheme (BES) to demonstrate resilience against attacks by colluding, unprivileged subscribers. Minimal Perfect Hash Families (PHFs) have been shown to provide a basis for the construction of memory-efficient t-resilient Key Pre-distribution Schemes (KPSs) from multiple instances of 1-resilient KPSs. Using this technique, the task of constructing a large t-resilient BES is reduced to finding a near-minimal PHF of appropriate parameters. While combinatorial and probabilistic constructions exist for minimal PHFs with certain parameters, the complexity of constructing them in general is currently unknown. This thesis introduces a new type of hash family, called a Scattering Hash Family (ScHF), which is designed to allow for the scalable and ingredient-independent design of memory-efficient BESs for large parameters, specifically resilience and total number of subscribers. A general BES construction using ScHFs is shown, which constructs t-resilient KPSs from other KPSs of any resilience ≤w≤t. In addition to demonstrating how ScHFs can be used to produce BESs , this thesis explores several ScHF construction techniques. The initial technique demonstrates a probabilistic, non-constructive proof of existence for ScHFs . This construction is then derandomized into a direct, polynomial time construction of near-minimal ScHFs using the method of conditional expectations. As an alternative approach to direct construction, representing ScHFs as a k-restriction problem allows for the indirect construction of ScHFs via randomized post-optimization. Using the methods defined, ScHFs are constructed and the parameters' effects on solution size are analyzed. For large strengths, constructive techniques lose significant performance, and as such, asymptotic analysis is performed using the non-constructive existential results. This work concludes with an analysis of the benefits and disadvantages of BESs based on the constructed ScHFs. Due to the novel nature of ScHFs, the results of this analysis are used as the foundation for an empirical comparison between ScHF-based and PHF-based BESs . The primary bases of comparison are construction efficiency, key material requirements, and message transmission overhead.
ContributorsO'Brien, Devon James (Author) / Colbourn, Charles J (Thesis advisor) / Bazzi, Rida (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2012
154142-Thumbnail Image.png
Description
A load balancer is an essential part of many network systems. A load balancer is capable of dividing and redistributing incoming network traffic to different back end servers, thus improving reliability and performance. Existing load balancing solutions can be classified into two categories: hardware-based or software-based. Hardware-based load balancing systems

A load balancer is an essential part of many network systems. A load balancer is capable of dividing and redistributing incoming network traffic to different back end servers, thus improving reliability and performance. Existing load balancing solutions can be classified into two categories: hardware-based or software-based. Hardware-based load balancing systems are hard to manage and force network administrators to scale up (replacing with more powerful but expensive hardware) when their system can not handle the growing traffic. Software-based solutions have a limitation when dealing with a single large TCP flow. In recent years, with the fast developments of virtualization technology, a new trend of network function virtualization (NFV) is being adopted. Instead of using proprietary hardware, an NFV network infrastructure uses virtual machines running to implement network functions such as load balancers, firewalls, etc. In this thesis, a new load balancing system is designed and evaluated. This system is high performance and flexible. It can fully utilize the bandwidth between a load balancer and back end servers compared to traditional load balancers such as HAProxy. The experimental results show that using this NFV load balancer could have $n$ ($n$ is the number of back end servers) times better performance than HAProxy. Also, an extract, transform and load (ETL) application was implemented to demonstrate that this load balancer can shorten data load time. The experiment shows that when loading a large data set (18.3GB), our load balancer needs only 28\% less time than traditional load balancer.
ContributorsWu, Jinxuan (Author) / Syrotiuk, Violet R. (Thesis advisor) / Bazzi, Rida (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2015
156638-Thumbnail Image.png
Description
This dissertation focuses on consequences of public policy on consumption responses.

Chapter 1 evaluates the effect of Thailand's car tax rebate scheme in 2012 on household consumption by examining aggregate and administrative data. Car sales doubled during the policy and dramatically declined afterwards while domestic household spending was sluggish

This dissertation focuses on consequences of public policy on consumption responses.

Chapter 1 evaluates the effect of Thailand's car tax rebate scheme in 2012 on household consumption by examining aggregate and administrative data. Car sales doubled during the policy and dramatically declined afterwards while domestic household spending was sluggish following the policy, suggesting a substantial dampening effect of the policy on future household consumption.



Chapter 2 develops a formal model to evaluate Thai household consumption responses. A life-cycle model of consumption and saving is developed with features including uninsured income risks, liquidity constraints, durable goods with embedded adjustment costs and non-homothetic preference in durable goods. Adjustment costs and liquidity constraints are important frictions in the evaluation of the shorter-term responses to changes in relative prices, while non-homotheticity captures the income effect given that cars are luxury goods in the Thai economy context. Key parameters and the partial equilibrium responses, which are key inputs to inform the aggregate outcome of the policy, are estimated. The results show that the car-tax rebates had a sizable impact on slowing Thai household consumption following the policy due to high level of elasticity of intertemporal substitution among Thai households.

Chapter 3 examines the effect of public smoking bans in the EU countries. Using individual-level data, this chapter investigates whether nationwide smoke-free laws in Europe lead to higher smoking reduction and cessation rates among mature smokers. Exploiting the different timing in imposing smoking ban laws and using a difference-in-differences approach, I find that light smokers and heavy smokers were more likely to quit smoking after comprehensive bans were in place while there was no significant effect on average smokers. The results confirm that smoking bans, particularly when enforced more strictly and comprehensively, lead to higher smoking cessation rates even among mature smokers with well-established addiction.
ContributorsTawichsri, Tanisa (Author) / Silverman, Daniel (Thesis advisor) / Kuminoff, Nicolai (Committee member) / Ventura, Gustavo (Committee member) / Arizona State University (Publisher)
Created2018
157028-Thumbnail Image.png
Description
Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness,

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach.

In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore

and predict students’ performances. Multiple machine learning models and the model accuracy were evaluated based on the Shapley Additive Explanation.

The Cross-Validation shows the Gradient Boosting Decision Tree has the best precision 85.93% with average 82.90%. Features like Component grade, Due Date, Submission Times have higher impact than others. Baseline model received lower precision due to lack of non-linear fitting.
ContributorsTian, Wenbo (Author) / Hsiao, Ihan (Thesis advisor) / Bazzi, Rida (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2019
135324-Thumbnail Image.png
Description
The Clean Power Plan seeks to reduce CO2 emissions in the energy industry, which is the largest source of CO2 emissions in the United States. In order to comply with the Clean Power Plan, electric utilities in Arizona will need to meet the electricity demand while reducing the use of

The Clean Power Plan seeks to reduce CO2 emissions in the energy industry, which is the largest source of CO2 emissions in the United States. In order to comply with the Clean Power Plan, electric utilities in Arizona will need to meet the electricity demand while reducing the use of fossil fuel sources in generation. The study first outlines the organization of the power sector in the United States and the structural and price changes attempted in the industry during the period of restructuring. The recent final rule of the Clean Power Plan is then described in detail with a narrowed focus on Arizona. Data from APS, a representative utility of Arizona, is used for the remainder of the analysis to determine the price increase necessary to cut Arizona's CO2 emissions in order to meet the federal goal. The first regression models the variables which affect total demand and thus generation load, from which we estimate the marginal effect of price on demand. The second regression models CO2 emissions as a function of different levels of generation. This allows the effect of generation on emissions to fluctuate with ranges of load, following the logic of the merit order of plants and changing rates of emissions for different sources. Two methods are used to find the necessary percentage increase in price to meet the CPP goals: one based on the mass-based goal for Arizona and the other based on the percentage reduction for Arizona. Then a price increase is calculated for a projection into the future using known changes in energy supply.
ContributorsHerman, Laura Alexandra (Author) / Silverman, Daniel (Thesis director) / Kuminoff, Nicolai (Committee member) / Department of Economics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136549-Thumbnail Image.png
Description
A primary goal in computer science is to develop autonomous systems. Usually, we provide computers with tasks and rules for completing those tasks, but what if we could extend this type of system to physical technology as well? In the field of programmable matter, researchers are tasked with developing synthetic

A primary goal in computer science is to develop autonomous systems. Usually, we provide computers with tasks and rules for completing those tasks, but what if we could extend this type of system to physical technology as well? In the field of programmable matter, researchers are tasked with developing synthetic materials that can change their physical properties \u2014 such as color, density, and even shape \u2014 based on predefined rules or continuous, autonomous collection of input. In this research, we are most interested in particles that can perform computations, bond with other particles, and move. In this paper, we provide a theoretical particle model that can be used to simulate the performance of such physical particle systems, as well as an algorithm to perform expansion, wherein these particles can be used to enclose spaces or even objects.
ContributorsLaff, Miles (Author) / Richa, Andrea (Thesis director) / Bazzi, Rida (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136275-Thumbnail Image.png
Description
The central goal of this thesis is to develop a practical approach to validating the correctness of SSA forms. Since achieving this goal is very involved for a general program, we restrict our attention to simple programs. In particular, the programs we consider are loop-free and are comprised of simple

The central goal of this thesis is to develop a practical approach to validating the correctness of SSA forms. Since achieving this goal is very involved for a general program, we restrict our attention to simple programs. In particular, the programs we consider are loop-free and are comprised of simple assignments to scalar variables, as well as input and output statements. Even for such a simple program, a full formal treatment would be very involved, extending beyond the scope of an undergraduate honors thesis.
ContributorsLusi, Dylan Patrick (Author) / Bazzi, Rida (Thesis director) / Fainekos, Georgios (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136403-Thumbnail Image.png
Description
Dynamic languages like Java enjoy robust and powerful testing tools like JUnit and Cobertura. On the other hand, while there is no shortage of unit testing frameworks for C, the nature of C makes it difficult to make frameworks as powerful as those for other languages. In this paper, we

Dynamic languages like Java enjoy robust and powerful testing tools like JUnit and Cobertura. On the other hand, while there is no shortage of unit testing frameworks for C, the nature of C makes it difficult to make frameworks as powerful as those for other languages. In this paper, we describe ZTest, a testing framework that addresses some of these shortcomings in the C unit testing landscape. We also discuss results of its application to a medium-sized C project.
ContributorsIadicicco, Alexander (Author) / Bazzi, Rida (Thesis director) / Shrivastava, Aviral (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05