Matching Items (471)
Filtering by

Clear all filters

164278-Thumbnail Image.png
ContributorsBuessing, Robert (Author) / Nian, Qiong (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164279-Thumbnail Image.png
ContributorsBuessing, Robert (Author) / Nian, Qiong (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164280-Thumbnail Image.png
ContributorsBuessing, Robert (Author) / Nian, Qiong (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
166149-Thumbnail Image.png
Description

The objective goal of this research is to maximize the speed of the end effector of a three link R-R-R mechanical system with constrained torque input control. The project utilizes MATLAB optimization tools to determine the optimal throwing motion of a simulated mechanical system, while mirroring the physical parameters and

The objective goal of this research is to maximize the speed of the end effector of a three link R-R-R mechanical system with constrained torque input control. The project utilizes MATLAB optimization tools to determine the optimal throwing motion of a simulated mechanical system, while mirroring the physical parameters and constraints of a human arm wherever possible. The analysis of this final result determines if the kinetic chain effect is present in the theoretically optimized solution. This is done by comparing it with an intuitively optimized system based on throwing motion derived from the forehand throw in Ultimate frisbee.

ContributorsHartmann, Julien (Author) / Grewal, Anoop (Thesis director) / Redkar, Sangram (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description

Malaria affects 229 million people annually, causing 410,000 deaths, with children being the most vulnerable. Insecticide-treated bed nets (ITNs) are the primary protection against mosquito bites, but 96% of nets become torn within two years of use. Our team developed a one-dollar repair kit that can be shipped alongside ITNs,

Malaria affects 229 million people annually, causing 410,000 deaths, with children being the most vulnerable. Insecticide-treated bed nets (ITNs) are the primary protection against mosquito bites, but 96% of nets become torn within two years of use. Our team developed a one-dollar repair kit that can be shipped alongside ITNs, including patching materials recycled from ITN manufacturing and simple-to-follow instructions. Our patching material, made from recycled high-density polyester anti-insect nets, is more than twice as strong as standard mosquito netting. During our first distribution in Uganda, 77% of families used our kits to repair their bed nets and experienced a 28.3% increase in their perceived importance of patching. Our primary target customers are nonprofits, governments, and governmental agencies. Our immediate market goal is to collaborate with major international malaria prevention nonprofits. With limited competition, our repair kits offer a superior, sustainable, and cost-effective solution. Our direct impact includes lives saved and cost savings for nonprofits. Our value proposition focuses on impact and outreach, as our kits increase net lifespan and organizations' reach.

ContributorsVoller-Brown, Benjamin (Author) / Bryne, Jared (Thesis director) / Lawson, Brennan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description
Central Vietnam and the communities located within the country experience a high level of natural disaster due to flooding and typhoons. The mission of the U.S. Indo-Pacific Command and the United States Army Corps of Engineers is to build new primary schools that have been damaged due to flooding. The

Central Vietnam and the communities located within the country experience a high level of natural disaster due to flooding and typhoons. The mission of the U.S. Indo-Pacific Command and the United States Army Corps of Engineers is to build new primary schools that have been damaged due to flooding. The goal of this research is to find a viable solution for the powering of each school, as many communities can’t handle the additional grid load of a fully functioning school. In this research, two main methods were considered after brainstorming possible solutions. First, the total usage of a typical school housing roughly 300 students and staff were calculated. Then, monocrystalline photovoltaic cells were evaluated using given efficiencies, energy usage, and incident shortwave radiation to calculate the total number of panels needed. Small scale wind turbines were also considered, using power curves and a PDF of wind speeds in Ho Chi Minh City for the year 2022, the amount of annual energy generated by turbines was calculated. It was found that solar energy was a much more viable solution. The average price of solar was found to be $19961.77 while the lowest price of wind turbines was $240000. With these high material costs, not factoring in workers or maintenance cost, wind energy is clearly not viable. Instead, installing a solar system on and around the school would be able to accomplish the requirements of the school.
ContributorsBell, Christopher (Author) / Schoepf, Jared (Thesis director) / Calhoun, Ronald (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-12
Description
This creative project details 5 engineers who made contributions to the ways that we live life today, yet have received little to no recognition for their efforts. The 5 engineers presented are Gottfried Wilhelm Leibniz, George Stephenson, Charles Babbage, David Alter, and Nikola Tesla. Each engineer is detailed via a

This creative project details 5 engineers who made contributions to the ways that we live life today, yet have received little to no recognition for their efforts. The 5 engineers presented are Gottfried Wilhelm Leibniz, George Stephenson, Charles Babbage, David Alter, and Nikola Tesla. Each engineer is detailed via a portrait and a biography that covers a little bit of their life and the contributions that they made.
ContributorsNieves, Timothy (Author) / Davis, Turner (Thesis director) / Green, Heather (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-12
Description
The need for cleaner, renewable energy is at a high demand as our world is at a critical point in changing the way in which we source our energy. Petroleum, coal, and natural gas are becoming less relevant. Energy sources such as solar, wind, and geothermal energy are becoming more

The need for cleaner, renewable energy is at a high demand as our world is at a critical point in changing the way in which we source our energy. Petroleum, coal, and natural gas are becoming less relevant. Energy sources such as solar, wind, and geothermal energy are becoming more resource-able and dependable options. As we, as a society, become more cautious as to how we take care of our planet, we must continue to look into renewable energy sources. Tidal wave energy has been a concept some companies and governments have been researching into. Tidal wave energy has been used for over a thousand years, originally used to operate grain mills in Europe. It is important as a society to understand how we resource and collect our energy sources, as we lean away from nonrenewable sources to more eco-friendly options. Having a deep understanding of how the system in place works allows society to better alter and adapt its use to better fit our needs. How tidal wave energy is collected and stored, for the most part, follows the same pattern/structure for all companies. Wave energy converters capture the tidal wave energy and are then converted into electricity. This electricity can then be put into the grid system, being able to power households. However, how tidal wave energy platforms are created can have a relatively big range in their design. Designing a tidal wave system that maximizes the amount of energy collected, while also limiting harm to sea-life, will allow for greater ways to support the energy needed for human purposes as nonrenewable energy begins to phase out of many industries. The intent for this thesis research paper is to dive into the mathematical analysis such as static and theoretical stress analysis for an offshore single body point absorber. Due to design limitations, the design for this thesis paper will be purely conceptual. Therefore, this design is analyzed purely for the intent to demonstrate mathematical findings for the gear and shaft system and understanding its potential limitations within the design. From the research and mathematical analysis, specific measurements and forces were calculated in order to determine what is needed to ensure no failure occurs within the system and the energy is collected for potential use.
ContributorsDick, Lena (Author) / Kosaraju, Srinivas (Thesis director) / Blair, Martin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-12
Description

The concept of entrainment broadly applies the locking of phases between 2 independent systems [17]. This physical phenomenon can be applied to modify neuromuscular movement in humans during bipedal locomotion. Gait entrainment to robotic devices have shown great success as alternatives to labor intensive methods of rehabilitation. By applying additional

The concept of entrainment broadly applies the locking of phases between 2 independent systems [17]. This physical phenomenon can be applied to modify neuromuscular movement in humans during bipedal locomotion. Gait entrainment to robotic devices have shown great success as alternatives to labor intensive methods of rehabilitation. By applying additional torque at the ankle joint, previous studies have exhibited consistent gait entrainment to both rigid and soft robotic devices. This entrainment is characterized by consistent phase locking of plantarflexion perturbations to the ‘push off’ event within the gait cycle. However, it is unclear whether such phase locking can be attributed to the plantarflexion assistance from the device or the sensory stimulus of movement at the ankle. To clarify the mechanism of entrainment, an experiment was designed to expose the user to a multitude of varying torques applied at the ankle to assist with plantar flexion. In this experiment, no significant difference in success of subject entrainment occurred when additional torque applied was greater than a detectable level. Force applied at the ankle varied from ~60N to ~130N. This resulted in successful entrainment ~88\% of the time at 98 N, with little to no increase in success as force increased thereafter. Alternatively, success of trials decreased significantly as force was reduced below this level, causing the perturbations to become undetectable by participants. Ultimately this suggests that higher levels of actuator pressure, and thus greater levels of torque applied to the foot, do not increase the likelihood of entrainment during walking. Rather, the results of this study suggest that proper detectable sensory stimulus is the true mechanism for entrainment.

ContributorsKruse, Anna (Author) / Lee, Hyunglae (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-12
Description
Our Idea: As a team of engineers, two in the engineering field and one in computer science and software development, we wanted to find a way to put these skills to use in our company. As we did not have a revolutionary idea to build our own product, we wanted to base

Our Idea: As a team of engineers, two in the engineering field and one in computer science and software development, we wanted to find a way to put these skills to use in our company. As we did not have a revolutionary idea to build our own product, we wanted to base our company on the assumption that people have great ideas and lack the ability to execute on these ideas. Our mission is to enable these people and companies to make their ideas a reality, and allow them to go to market with a clean and user friendly product. We are using our skills and experience in hardware and device prototyping and testing, as well as software design and development to make this happen. Implementation: To this point, we have been working with a client building a human diagnostic and enhancement AI device. We have been consulting on mostly the design and creation of their first proof of concept, working on hardware and sensor interaction as well as developing the software allowing their platform to come to life. We have been working closely with the leaders of the company, who have the ideas and business knowledge, while we focus on the technology side. As for the scalability and market potential of our business, we believe that the potential market is not the limiting factor. Instead, the limiting factor to the growth of our business is the time we have to devote. We are currently only working with one client, and not looking to expand into new clients. We believe this would require the addition of new team members, but instead we are happy with the progress we are making at the moment. We believe we are not only building equity in business we believe in, but also building a product that could help the safety and wellness of our users.
ContributorsSchildgen, Nathan (Author) / Engerholm, Liam (Co-author) / Miller, Kyle (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2024-05