Matching Items (140)
130311-Thumbnail Image.png
Description
Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to

Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.
ContributorsZhou, X. Edward (Author) / Gao, Xiang (Author) / Barty, Anton (Author) / Kang, Yanyong (Author) / He, Yuanzheng (Author) / Liu, Wei (Author) / Ishchenko, Andrii (Author) / White, Thomas A. (Author) / Yefanov, Oleksandr (Author) / Han, Gye Won (Author) / Xu, Qingping (Author) / de Waal, Parker W. (Author) / Suino-Powell, Kelly M. (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Wang, Meitian (Author) / Li, Dianfan (Author) / Caffrey, Martin (Author) / Chapman, Henry N. (Author) / Spence, John (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Stevens, Raymond C. (Author) / Cherezov, Vadim (Author) / Melcher, Karsten (Author) / Xu, H. Eric (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2016-04-12
130313-Thumbnail Image.png
Description
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the

Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.
ContributorsLi, Dianfan (Author) / Stansfeld, Phillip J. (Author) / Sansom, Mark S. P. (Author) / Keogh, Aaron (Author) / Vogeley, Lutz (Author) / Howe, Nicole (Author) / Lyons, Joseph A. (Author) / Aragao, David (Author) / Fromme, Petra (Author) / Fromme, Raimund (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Kupitz, Christopher (Author) / Rendek, Kimberley (Author) / Weierstall, Uwe (Author) / Zatsepin, Nadia (Author) / Cherezov, Vadim (Author) / Liu, Wei (Author) / Bandaru, Sateesh (Author) / English, Niall J. (Author) / Gati, Cornelius (Author) / Barty, Anton (Author) / Yefanov, Oleksandr (Author) / Chapman, Henry N. (Author) / Diederichs, Kay (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Seibert, M. Marvin (Author) / Caffrey, Martin (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-12-17
130315-Thumbnail Image.png
Description
Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the

Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.
ContributorsEdlund, Petra (Author) / Takala, Heikki (Author) / Claesson, Elin (Author) / Henry, Leocadie (Author) / Dods, Robert (Author) / Lehtivuori, Heli (Author) / Panman, Matthijs (Author) / Pande, Kanupriya (Author) / White, Thomas (Author) / Nakane, Takanori (Author) / Berntsson, Oskar (Author) / Gustavsson, Emil (Author) / Bath, Petra (Author) / Modi, Vaibhav (Author) / Roy Chowdhury, Shatabdi (Author) / Zook, James (Author) / Berntsen, Peter (Author) / Pandey, Suraj (Author) / Poudyal, Ishwor (Author) / Tenboer, Jason (Author) / Kupitz, Christopher (Author) / Barty, Anton (Author) / Fromme, Petra (Author) / Koralek, Jake D. (Author) / Tanaka, Tomoyuki (Author) / Spence, John (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Boutet, Sebastien (Author) / Nango, Eriko (Author) / Moffat, Keith (Author) / Groenhof, Gerrit (Author) / Ihalainen, Janne (Author) / Stojkovic, Emina A. (Author) / Schmidt, Marius (Author) / Westenhoff, Sebastian (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2016-10-19
130318-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement.

Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.
ContributorsNogly, Przemyslaw (Author) / Panneels, Valerie (Author) / Nelson, Garrett (Author) / Gati, Cornelius (Author) / Kimura, Tetsunari (Author) / Milne, Christopher (Author) / Milathianaki, Despina (Author) / Kubo, Minoru (Author) / Wu, Wenting (Author) / Conrad, Chelsie (Author) / Coe, Jesse (Author) / Bean, Richard (Author) / Zhao, Yun (Author) / Bath, Petra (Author) / Dods, Robert (Author) / Harimoorthy, Rajiv (Author) / Beyerlein, Kenneth R. (Author) / Rheinberger, Jan (Author) / James, Daniel (Author) / Deponte, Daniel (Author) / Li, Chufeng (Author) / Sala, Leonardo (Author) / Williams, Garth J. (Author) / Hunter, Mark S. (Author) / Koglin, Jason E. (Author) / Berntsen, Peter (Author) / Nango, Eriko (Author) / Iwata, So (Author) / Chapman, Henry N. (Author) / Fromme, Petra (Author) / Frank, Matthias (Author) / Abela, Rafael (Author) / Boutet, Sebastien (Author) / Barty, Anton (Author) / White, Thomas A. (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Neutze, Richard (Author) / Schertler, Gebhard (Author) / Standfuss, Jorg (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Molecular Sciences (Contributor)
Created2016-08-22
Description
The United States has been facing a resurgence of vaccine preventable infectious diseases. Non-medical vaccination exemptions (NMEs) which include religious exemptions and philosophical vaccine exemptions are contributing factors in state vaccination rates dropping. The policies surrounding such exemptions vary from state to state. Some states with higher rates of nonmedical

The United States has been facing a resurgence of vaccine preventable infectious diseases. Non-medical vaccination exemptions (NMEs) which include religious exemptions and philosophical vaccine exemptions are contributing factors in state vaccination rates dropping. The policies surrounding such exemptions vary from state to state. Some states with higher rates of nonmedical vaccine exemptions are dealing with repercussions for this including vaccination rates falling below desired herd immunity and thus putting vulnerable populations such as those who are immunocompromised, too young for vaccination and the elderly at a higher risk.

This thesis aims to examine vaccine preventable re-emerging infectious diseases in the United States with the objective of reaching vaccine hesitant populations and providing them with the tools to make informed decisions to seek out immunizations. This will be done by exploring five different diseases and infections, discussing why some individuals feel hesitant to get immunizations, examining how nonmedical vaccine exemptions are correlated to increased cases of disease outbreaks, looking into state laws specifically focused on countering nonmedical vaccine exemptions and the steps that can be taken moving forward.
ContributorsUmar, Syeda (Author) / Jehn, Megan (Thesis director) / Glegziabher, Meskerem (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131315-Thumbnail Image.png
Description
Objective: To provide insight into the World Health Organization SAGE Working Group Vaccine Hesitancy Survey by applying the tool to populations across Maricopa County, Arizona. Design: An online survey was conducted using the Qualtrics Survey Software, of individuals residing in Maricopa County, Arizona during the month of October 2019. Results:

Objective: To provide insight into the World Health Organization SAGE Working Group Vaccine Hesitancy Survey by applying the tool to populations across Maricopa County, Arizona. Design: An online survey was conducted using the Qualtrics Survey Software, of individuals residing in Maricopa County, Arizona during the month of October 2019. Results: Of 209 respondents, the followed demonstrated to be the top 3 reasons for either having not received the flu shot yet or having not planned to receive the flu shot: “I’m healthy, I don’t need it”(20.1%); “Worried I might get the flu from it”(17.7%); “I don’t think it works”(17.7%) Statistical analysis demonstrated that vaccine hesitant and non-hesitant respondents are likely to respond differently to topics covering: safety of vaccines; self-perceived health status; importance of the flu shot among one’s peers; flu vaccine related knowledge Conclusions: The WHO VHS applied to the population of Maricopa County, Arizona reported little hesitancy towards the seasonal flu vaccine. Statistical analysis of Vaccine Hesitant respondents vs. Non-Hesitant respondents demonstrates that specified public health education focused on the immunological implications of vaccines may be needed for the hesitant population to gain confidence in vaccine efficacy. A more diverse respondent group that consists of residents beyond the county lines of Maricopa is needed to understand the full scope of vaccine hesitancy that exists in Arizona.
ContributorsMaroofi, Hanna (Co-author, Co-author) / Jehn, Megan (Thesis director) / Muabyi, Anuj (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131157-Thumbnail Image.png
Description
Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment.

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment. Technological progression in metagenomics has allowed for large-scale analysis of complex viral communities in a number of samples, including wastewater. Members of the Microviridae family are non-enveloped, ssDNA bacteriophages, and are known to infect enterobacteria. Members of the Genomoviridae family similarly are non-enveloped, ssDNA viruses, but are presumed to infect fungi rather than eubacteria. As these two families of viruses are not relatively documented and their diversity poorly classified, this study aimed to analyze the presence of genomoviruses and the diversity of microviruses in nine samples representative of wastewater in Arizona and other regions of the United States. Using a metagenomic approach, the nucleic acids of genomoviruses and microviruses were isolated, assembled into complete genomes, and characterized through visual analysis: a heat chart showing percent coverage for genomoviruses and a circular phylogenetic tree showing diversity of microviruses. The heat map results for the genomoviruses showed a large presence of 99 novel sequences in all nine wastewater samples. Additionally, the 535 novel microviruses displayed great diversity in the cladogram, both in terms of sub-family and isolation source. Further research should be conducted in order to classify the taxonomy of microviruses and the diversity of genomoviruses. Finally, this study suggests future exploration of the viral host, prior to entering the wastewater system.
ContributorsSchreck, Joshua Reuben (Author) / Varsani, Arvind (Thesis director) / Rolf, Halden (Committee member) / Misra, Rajeev (Committee member) / School of Film, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132112-Thumbnail Image.png
Description
Human health risk assessment is the process by which regulatory agencies estimate the potential for adverse health outcomes as a result of exposure to contaminated food, water, or environmental conditions (US EPA, 2014). However, the risk assessment process typically does not require inputs to be culturally sensitive to the groups

Human health risk assessment is the process by which regulatory agencies estimate the potential for adverse health outcomes as a result of exposure to contaminated food, water, or environmental conditions (US EPA, 2014). However, the risk assessment process typically does not require inputs to be culturally sensitive to the groups facing the potential health outcomes, and the guidelines suggest little emphasis on food security or food sovereignty, concepts which highlight the importance of access to healthy and culturally appropriate foods. This thesis outlines the theoretical concepts of food and environmental justice, framing them in the context of application to land based, rural communities such as Native American groups. This is significant due to the historically disproportionate contamination of Native lands by hazardous waste or other toxins. Three noteworthy case study examples featuring elements of oral exposure pathways to environmental contamination will be outlined and analyzed to articulate how, by incorporating locally-grounded knowledge, a risk assessment could uncover more accurate information, leading to more appropriate and effective mitigation techniques that uphold food and environmental justice principles. Finally, the trade offs between the expansion of local knowledge and the limitations on cultural consumption are discussed, with the conclusion that supports balancing these trade offs through locally grounded, community-driven assessment and mitigation of contamination.
ContributorsDineen, Lillian K (Author) / BurnSilver, Shauna (Thesis director) / Jehn, Megan (Committee member) / Gonzales, Melissa (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131689-Thumbnail Image.png
Description
Yellow-bellied marmots (Marmota flavivent) are semi-fossorial ground-dwelling sciurid rodents native to the western United States. They are facultatively social and live in colonies that may contain over 50 individuals. Marmot populations are well studied in terms of their diet, life cycle, distribution, and behavior, however, knowledge about viruses associated with

Yellow-bellied marmots (Marmota flavivent) are semi-fossorial ground-dwelling sciurid rodents native to the western United States. They are facultatively social and live in colonies that may contain over 50 individuals. Marmot populations are well studied in terms of their diet, life cycle, distribution, and behavior, however, knowledge about viruses associated with marmots is very limited. In this study we aim to identify DNA viruses by non-invasive sampling of their feces. Viral DNA was extracted from fecal material of 35 individual marmots collected in Colorado and subsequently submitted to rolling circle amplification for circular molecule enrichment. Using a viral metagenomics approach which included high-throughput sequencing and verification of viral genomes using PCR, cloning and sequencing, a diverse group of single-stranded (ss) DNA viruses were identified. Diverse ssDNA viruses were identified that belong to two established families, Genomoviridae (n=7) and Anelloviridae (n=1) and several others that belong to unclassified circular replication associated encoding single-stranded (CRESS) DNA virus groups (n=19). There were also circular DNA molecules extracted (n=4) that appear to encode one viral-like gene and are composed of <1545 nt. The viruses that belonged to the family Genomoviridae clustered with those in the Gemycircularvirus genus. The genomoviruses were extracted from 6 samples. These clustered with gemycircularvirus extracted from arachnids and feces. The anellovirus, extracted from one sample, identified here has a genome sequence that is most similar to those from other rodent species, lagomorphs, and mosquitos. The CRESS viruses identified here were extracted from 9 samples and are novel and cluster with others identified from avian species. This study gives a snapshot of viruses associated with marmots based on fecal sampling.
ContributorsKhalifeh, Anthony (Author) / Varsani, Arvind (Thesis director) / Kraberger, Simona (Committee member) / Dolby, Greer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132558-Thumbnail Image.png
Description
To date, there have been few, if any, studies evaluating the venom toxin levels in dogs that have been naturally envenomated by pit vipers. Understanding venom toxin pharmacokinetics in a clinical setting is important for a variety of reasons, including the potential to better elucidate treatment options, prognosis, and other

To date, there have been few, if any, studies evaluating the venom toxin levels in dogs that have been naturally envenomated by pit vipers. Understanding venom toxin pharmacokinetics in a clinical setting is important for a variety of reasons, including the potential to better elucidate treatment options, prognosis, and other factors associated with pit viper envenomation. In addition, dogs serve as a comparative species to humans for evaluating pit viper envenomations. This pilot study’s primary objective was to address the question of “What do we see?” in dogs presenting for rattlesnake envenomation. To answer this question, we obtained serum from envenomated dogs presenting at three veterinary clinics, then used enzyme-linked immunosorbent assay (ELISA) and western blot analysis to measure total venom and key toxins in sera. Phospholipase A2, a primary venom toxin, was identified in a few samples by the western blot, and contributed to the positive correlation between percent echinocytes in the blood and venom concentration. Medical data records were compared to venom concentrations measured using ELISA to determine whether there were any significant correlations. First, the hematological results were compared. Clotting times showed a strong positive correlation, clotting times and platelets showed a negative correlation, while echinocytes and platelets showed no correlation. When compared to venom concentration, clotting times showed a negative correlation, while age showed a positive correlation. Weight and platelets were also compared to venom concentration, but no significant correlations were found. The logistics of this study provided a real-world model where time elapsed between envenomation and hospital admission, thus giving a realistic look at what occurs in both animal and human medicine.
ContributorsNelson, Alexis (Co-author, Co-author) / DeNardo, Dale (Thesis director) / Woods, Craig (Thesis director) / Varsani, Arvind (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05