Matching Items (104)
133679-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a progressive cognitive and behavior disorder that is characterized by the deposition of extracellular Aβ plaques, intracellular neurofibrillary tangles, and neuroinflammation. Aβ is generated by cleavage of the amyloid precursor protein (APP) by β-secretase (BACE1) and, subsequently, y- secretase. In recent years, there has been an

Alzheimer’s disease (AD) is a progressive cognitive and behavior disorder that is characterized by the deposition of extracellular Aβ plaques, intracellular neurofibrillary tangles, and neuroinflammation. Aβ is generated by cleavage of the amyloid precursor protein (APP) by β-secretase (BACE1) and, subsequently, y- secretase. In recent years, there has been an increasing interest in studying and understanding inflammation as a therapeutic target for AD. Inflammation manifests in the brain in the form of activated microglia and astrocytes. These cells are able to release high levels of inflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α). TNF-α is a major cytokine, which is involved in early inflammatory events and plays a role in the progression of AD pathology. There are currently no treatments that target chronic neuroinflammation. However, previous work in our laboratory with transgenic mice modeling AD suggested that the anti-cancer drug lenalidomide could lower neuroinflammation and slow AD progression, though the cellular and molecular mechanisms are yet to be elucidated. Here we hypothesized that lenalidomide can modulate TNF-α production in microglia and decrease amyloidogenesis. Using immortal cell lines mimicking several brain cell types, we discovered that lenalidomide is likely to decrease inflammation by modulating microglia cells rather than neurons or astrocytes. In addition, the drug may prevent the overexpression of BACE1 upon inflammation, thus blocking the overproduction of Aβ. If confirmed, these results could lead to a better understanding of how inflammation regulates Aβ synthesis and provide novel cellular and molecular therapeutic targets to control the progression AD.
ContributorsGujju, Manasa (Author) / DeCourt, Boris (Thesis director) / Olive, M. Foster (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134051-Thumbnail Image.png
Description
Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose reduction on vulnerability to relapse, nor has abrupt nicotine dose

Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose reduction on vulnerability to relapse, nor has abrupt nicotine dose reduction been evaluated in terms of behavioral economic characteristics of demand and elasticity been evaluated for reduced doses of nicotine. Using a rat model, we first evaluated the comparability of between- and within-session protocols for establishing characteristics of demand and elasticity for nicotine to shorten experimental timelines for this study and future studies. We then tested environmental enrichment and sex as factors of elasticity of demand for nicotine. Using a rat model of relapse to cues, we also examined the effects of nicotine dose-reduction on vulnerability to relapse. We found differences in maximum consumption and demand between the between- and within-session protocols, as well as sex differences in elasticity of demand on the within-session protocol where male demand was more elastic than female demand. Additionally, we found that enrichment significantly increased elasticity of demand for nicotine for both males and females. Finally, preliminary analyses revealed that nicotine dose reduction yields more inelastic demand and higher maximum consumption, and these outcomes predict increased time to extinction of the association between nicotine and contingent cues, and increased rates of relapse. These studies highlight the usefulness and validity of within-session protocols, and also illustrate the necessity for rigorous testing of forced dose reduction on nicotine vulnerability.
ContributorsCabrera-Brown, Gabriella Paula (Author) / Gipson-Reichardt, Cassandra (Thesis director) / Olive, M. Foster (Committee member) / Davis, Mary (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134928-Thumbnail Image.png
Description
Finding life beyond Earth could change our understanding of life and habitability. The best place to look for life beyond Earth is Jupiter's moon, Europa. It has been estimated Europa may have a liquid, salt-water subsurface with 2 to 3 times the volume of all Earth's oceans. Knowing that all

Finding life beyond Earth could change our understanding of life and habitability. The best place to look for life beyond Earth is Jupiter's moon, Europa. It has been estimated Europa may have a liquid, salt-water subsurface with 2 to 3 times the volume of all Earth's oceans. Knowing that all life requires water, it is in our best interest to explore Europa. This thesis explored the plausibility of life on Europa in four of its environments: on the surface, under the ice shell, in the liquid subsurface, and at the bottom of the liquid subsurface. Each of these environments were defined from science literature and compared to known Earth analogs. Europa's surface is not likely to support life, as there is not liquid water present. There is also extremely high radiation bombardment and extremely low surface temperatures that are estimated to be well out of the range for supporting life. It is more plausible that life could be under Europa's ice shell than on the surface. Under the surface, radiation exposure dramatically reduces. Researchers have found organisms on Earth that can live in similar environments as Europa's ice as well. These organisms require some interaction with liquid water though. Uncertainties about Europa's ice shell thickness and radiation load per depth it experiences, as well as there being limited research on organisms in ice environments, hinder us from definitively assessing the plausibility of life under the surface. The best environment on Europa to look for life on Europa is the subsurface. There remain a lot of uncertainties about the subsurface, however, that make it difficult to assess the plausibility of finding life. These uncertainties include its depth, water activity, salinity, temperature, pressure, and structure. This subsurface may be suitable for life, but until we can further understand the environment of the subsurface, we cannot make definite conclusions. As for assessing the plausibility of life at the bottom of Europa's subsurface, there is not much we know about this environment either. It has been suggested there may be hydrothermal vents, but no evidence has either supported or rejected this idea. Without a clear understanding of the environment at the bottom of the subsurface, the plausibility of life here cannot be definitively answered. It is apparent we need to further study Europa. In particular, we need to focus on understanding the subsurface. When the subsurface is better defined, we can better assess the plausibility of life being present. Fortunately, both NASA and the ESA are currently planning missions to Europa that are scheduled to launch in the 2020s.
ContributorsHoward, Cheyenne Whiffen (Author) / Farmer, Jack (Thesis director) / Shock, Everett (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134054-Thumbnail Image.png
Description
Cases of heroin use and overdose are on the rise in the United States which has created what some call a public health crisis. Previous studies have investigated the beneficial effect of social interaction recovering addicts, and in animal models of addiction, social interaction can prevent or reverse the conditioned

Cases of heroin use and overdose are on the rise in the United States which has created what some call a public health crisis. Previous studies have investigated the beneficial effect of social interaction recovering addicts, and in animal models of addiction, social interaction can prevent or reverse the conditioned rewarding effects of cocaine. This study sought to determine if social interaction would prevent or diminish a conditioned preference for a heroin-paired context. Following establishment of baseline place preference, adult male Sprague-Dawley rats underwent once daily conditioning with either saline, heroin (1 mg/kg), or the animal's cage-mate for a total of 8 conditioning sessions. Assessment of post-conditioning place preference revealed that both the heroin injections and the presence of the cage-mate produced a place preference . In contrast to the findings of previous studies using cocaine as the conditioning drug, it was determined that rats preferred the heroin-paired context over that paired with the cage-mate.. These findings suggest that the protective effects of social interaction found in prior studies using cocaine as the conditioning drug may not extend to opiates, perhaps a result of stronger contextual conditioning and/or rewarding effects of this class of abused drugs.
ContributorsMarble, Krista Lillian (Author) / Olive, M. Foster (Thesis director) / Tomek, Seven (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134278-Thumbnail Image.png
Description
The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for

The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for the differentiation of Embryonic Stem Cells (ESC) into neuronal precursors (Li z et al, 2006). ERK signaling has also shown to mediate Schwann cell myelination of the peripheral nervous system (PNS) as well as oligodendrocyte proliferation (Newbern et al, 2011). The class of developmental disorders that result in the dysregulation of RAS signaling are known as RASopathies. The molecular and cell-specific consequences of these various pathway mutations remain to be elucidated. While there is evidence for altered DNA transcription in RASopathies, there is little work examining the effects of the RASopathy-linked mutations on protein translation and post-translational modifications in vivo. RASopathies have phenotypic and molecular similarities to other disorders such as Fragile X Syndrome (FXS) and Tuberous Sclerosis (TSC) that show evidence of aberrant protein synthesis and affect related pathways. There are also well-defined downstream RAS pathway elements involved in translation. Additionally, aberrant corticospinal axon outgrowth has been observed in disease models of RASopathies (Xing et al, 2016). For these reasons, this present study examines a subset of proteins involved in translation and translational regulation in the context of RASopathy disease states. Results indicate that in both of the tested RASopathy model systems, there is altered mTOR expression. Additionally the loss of function model showed a decrease in rps6 activation. This data supports a role for the selective dysregulation of translational control elements in RASopathy models. This data also indicates that the primary candidate mechanism for control of altered translation in these modes is through the altered expression of mTOR.
ContributorsHilbert, Alexander Robert (Author) / Newbern, Jason (Thesis director) / Olive, M. Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Yellowstone National Park has a vibrant variety of flora, fauna, and hydrothermal systems all collected together in one large and complex system. Studies have been conducted for at least several decades in order to make sense of this system in ways that may be relevant to other similar geologies around

Yellowstone National Park has a vibrant variety of flora, fauna, and hydrothermal systems all collected together in one large and complex system. Studies have been conducted for at least several decades in order to make sense of this system in ways that may be relevant to other similar geologies around the world. The latest update in this ever-ongoing study involves the collection and analysis of water samples from 2016. These samples have been analyzed for conductivity, pH, temperature, dissolved organic carbon, dissolved inorganic carbon, carbon isotopes, dissolved oxygen, ferrous iron, sulfide, silica, and more. While not many trends were found in this data in regards to dissolved organic carbon values, this is a substantial addition to a growing body of information that could yield more impressive information in times to come. In addition, factors that have yet to analyzed for this 2016 data, such as concentrations of metals and metalloids, may provide some insights when put through a chloride vs sulfate framework to separate out different reaction regions.
ContributorsDoan, Cuong Le (Author) / Shock, Everett (Thesis director) / Gould, Ian (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
161966-Thumbnail Image.png
Description
The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting

The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting in the loss of information. These modifications can happen during early and late diagenesis and differ depending on local geochemical properties. These post-depositional modifications need to be understood to better interpret the fossil record. Siliceous hot spring deposits (sinters) are of particular interest for biosignature research as they are early Earth analog environments and targets for investigating the presence of fossil life on Mars. As silica-supersaturated fluids flow from the vent to the distal apron, they precipitate non-crystalline opal-A that fossilizes microbial communities at a range in scales (μm-cm). Therefore, many studies have documented the ties between the active microbial communities and the morphological and chemical biosignatures in hot springs. However, far less attention has been placed on understanding preservation in systems with complex mineralogy or how post-depositional alteration affects the retention of biosignatures. Without this context, it can be challenging to recognize biosignatures in ancient rocks. This dissertation research aims to refine our current understanding of biosignature preservation and retention in sinters. Biosignatures of interest include organic matter, microfossils, and biofabrics. The complex nature of hot springs requires a comprehensive understanding of biosignature preservation that is representative of variable chemistries and post-depositional alterations. For this reason, this dissertation research chapters are field site-based. Chapter 2 investigates biosignature preservation in an unusual spring with mixed opal-A-calcite mineralogy at Lýsuhóll, Iceland. Chapter 3 tracks how silica diagenesis modifies microfossil morphology and associated organic matter at Puchuldiza, Chile. Chapter 4 studies the effects of acid fumarolic overprinting on biosignatures in Gunnuhver, Iceland. To accomplish this, traditional geologic methods (mapping, petrography, X-ray diffraction, bulk elemental analyses) were combined with high-spatial-resolution elemental mapping to better understand diagenetic effects in these systems. Preservation models were developed to predict the types and styles of biosignatures that can be present depending on the depositional and geochemical context. Recommendations are also made for the types of deposits that are most likely to preserve biosignatures.
ContributorsJuarez Rivera, Marisol (Author) / Farmer, Jack D (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Shock, Everett (Committee member) / Garcia-Pichel, Ferran (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2021
171585-Thumbnail Image.png
Description
I present results of field and laboratory experiments investigating the habitability of one of Earth’s driest environments: the Atacama Desert. This Desert, along the west coast of South America spanning Perú and Chile, is one of the driest places on Earth and has been exceedingly arid for millions of years.

I present results of field and laboratory experiments investigating the habitability of one of Earth’s driest environments: the Atacama Desert. This Desert, along the west coast of South America spanning Perú and Chile, is one of the driest places on Earth and has been exceedingly arid for millions of years. These conditions create the perfect natural laboratory for assessing life at the extremes of habitability. All known life needs water; however, the extraordinarily dry Atacama Desert is inhabited by well-adapted microorganisms capable of colonizing this hostile environment. I show field and laboratory evidence of an environmental process, water vapor adsorption, that provides a daily, sustainable input of water into the near (3 - 5 cm) subsurface through water vapor-soil particle interactions. I estimate that this water input may rival the yearly average input of rain in these soils (~2 mm). I also demonstrate, for the first time, that water vapor adsorption is dependent on mineral composition via a series of laboratory water vapor adsorption experiments. The results of these experiments provide evidence that mineral composition, and ultimately soil composition, measurably and significantly affect the equilibrium soil water content. This suggests that soil microbial communities may be extremely heterogeneous in distribution depending on the distribution of adsorbent minerals. Finally, I present changes in biologically relevant gasses (i.e., H2, CH4, CO, and CO2) over long-duration incubation experiments designed to assess the potential for biological activity in soils collected from a hyperarid region in the Atacama Desert. These long-duration experiments mimicked typical water availability conditions in the Atacama Desert; in other words, the incubations were performed without condensed water addition. The results suggest a potential for methane-production in the live experiments relative to the sterile controls, and thus, for biological activity in hyperarid soils. However, due to the extremely low biomass and extremely low rates of activity in these soils, the methods employed here were unable to provide robust evidence for activity. Overall, the hyperarid regions of the Atacama Desert are an important resource for researchers by providing a window into the environmental dynamics and subsequent microbial responses near the limit of habitability.
ContributorsGlaser, Donald M (Author) / Hartnett, Hilairy E (Thesis advisor) / Anbar, Ariel (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2022
190909-Thumbnail Image.png
Description
Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a

Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a half of field work in 10 regions within Yellowstone National Park and subsequent geochemical lab analyses reveal that sulfate-dominant acidic regions have high DOC (Up to 57 ppm C) and lower DIC (up to 50 ppm C) compared to neutral-chloride regions with low DOC (< 2 ppm C) and higher DIC (up to 100 ppm C). Abundances and isotopic data suggest that sedimentary rock erosion by acidic hydrothermal fluids, fresh snow-derived meteoric water, and exogenous carbon input allowed by local topography may affect DOC levels. Evaluating the isotopic compositions of DIC and DOC in hydrothermal fluids gives insight on the geology and microbial life in the subsurface between different regions. DIC δ13C values range from -4‰ to +5‰ at pH 5-9 and from -10‰ to +3‰ at pH 2-5 with several springs lower than -10‰. DOC δ13C values parkwide range from -10‰ to -30‰. Within this range, neutral-chloride regions in the Lower Geyser Basin have lighter isotopes than sulfate-dominant acidic regions. In hot springs with elevated levels of DOC, the range only varies between -20‰ and -26‰ which may be caused by local exogenous organic matter runoff. Combining other geochemical measurements, such as differences in chloride and sulfate concentrations, demonstrates that some regions contain mixtures of multiple fluids moving through the complex hydrological system in the subsurface. The mixing of these fluids may account for increased levels of DOC in meteoric sulfate-dominant acidic regions. Ultimately, the foundational values of dissolved carbon and their isotopic composition is provided in a parkwide study, so results can be combined with future studies that apply different sequencing analyses to understand specific biogeochemical cycling and microbial communities that occur in individual hot springs.
ContributorsBarnes, Tanner (Author) / Shock, Everett (Thesis advisor) / Meyer-Dombard, D'Arcy (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2023
189340-Thumbnail Image.png
Description
As air quality standards become more stringent to combat poor air quality, there is a greater need for more effective pollutant control measures and increased air monitoring network coverage. Polluted air, in the form of aerosols and gases, can impact respiratory and cardiovascular health, visibility, the climate, and material weathering.

As air quality standards become more stringent to combat poor air quality, there is a greater need for more effective pollutant control measures and increased air monitoring network coverage. Polluted air, in the form of aerosols and gases, can impact respiratory and cardiovascular health, visibility, the climate, and material weathering. This work demonstrates how traditional networks can be used to study generational events, how these networks can be supplemented with low-cost sensors, and the effectiveness of several control measures. First, an existing network was used to study the effect of COVID-19 travel restrictions on air quality in Maricopa County, Arizona, which would not have been possible without the historical record that a traditional network provides. Although this study determined that decreases in CO and NO2 were not unique to the travel restrictions, it was limited to only three locations due to network sparseness. The second part of this work expanded the traditional NO2 monitoring network using low-cost sensors, that were first collocated with a reference monitor to evaluate their performance and establish a robust calibration. The sensors were then deployed to the field to varying results; their calibration was further improved by cycling the sensors between deployment and reference locations throughout the summer. This calibrated NO2 data, along with volatile organic compound data, were combined to enhance the understanding of ozone formation in Maricopa County, especially during wildfire season. In addition to being in non-attainment for ozone standards, Maricopa County fails to meet particulate matter under 10 μm (PM10) standards. A large portion of PM10 emissions is attributed to fugitive dust that is either windblown or kicked up by vehicles. The third part of this work demonstrated that Enzyme Induced Carbonate Precipitation (EICP) treatments aggregate soil particles and prevent fugitive dust emissions. The final part of the work examined tire wear PM10 emissions, as vehicles are another significant contributor to PM10. Observations showed a decrease in tire wear PM10 during winter with little change when varying the highway surface type.
ContributorsMiech, Jason Andrew (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew P (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2023