Matching Items (127)
Description
Since the 20th century, Arizona has undergone shifts in agricultural practices, driven by urban expansion and crop irrigation regulations. These changes present environmental challenges, altering atmospheric processes and influencing climate dynamics. Given the potential threats of climate change and drought on water availability for agriculture, further modifications in the agricultural

Since the 20th century, Arizona has undergone shifts in agricultural practices, driven by urban expansion and crop irrigation regulations. These changes present environmental challenges, altering atmospheric processes and influencing climate dynamics. Given the potential threats of climate change and drought on water availability for agriculture, further modifications in the agricultural landscape are expected. To understand these land use changes and their impact on carbon dynamics, our study quantified aboveground carbon storage in both cultivated and abandoned agricultural fields. To accomplish this, we employed Python and various geospatial libraries in Jupyter Notebook files, for thorough dataset assembly and visual, quantitative analysis. We focused on nine counties known for high cultivation levels, primarily located in the lower latitudes of Arizona. Our analysis investigated carbon dynamics across not only abandoned and actively cultivated croplands but also neighboring uncultivated land, for which we estimated the extent. Additionally, we compared these trends with those observed in developed land areas. The findings revealed a hierarchy in aboveground carbon storage, with currently cultivated lands having the lowest levels, followed by abandoned croplands and uncultivated wilderness. However, wilderness areas exhibited significant variation in carbon storage by county compared to cultivated and abandoned lands. Developed lands ranked highest in aboveground carbon storage, with the median value being the highest. Despite county-wide variations, abandoned croplands generally contained more carbon than currently cultivated areas, with adjacent wilderness lands containing even more than both. This trend suggests that cultivating croplands in the region reduces aboveground carbon stores, while abandonment allows for some replenishment, though only to a limited extent. Enhancing carbon stores in Arizona can be achieved through active restoration efforts on abandoned cropland. By promoting native plant regeneration and boosting aboveground carbon levels, these measures are crucial for improving carbon sequestration. We strongly advocate for implementing this step to facilitate the regrowth of native plants and enhance overall carbon storage in the region.
ContributorsGoodwin, Emily (Author) / Eikenberry, Steffen (Thesis director) / Kuang, Yang (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05
Description
Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma

Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma growth. The study aims to explore key factors influencing tumor morphology and to contribute to enhancing prediction techniques for treatment.
ContributorsShayegan, Tara (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05
Description
A genome wide association study (GWAS) of treatment outcomes for citalopram and escitalopram, two frontline SSRI treatments for Major Depressive Disorder, was conducted with 529 subjects on an imputed dataset. While no variants of genome-wide significance were identified, various potentially interesting variants were identified that warrant further exploration. These findings

A genome wide association study (GWAS) of treatment outcomes for citalopram and escitalopram, two frontline SSRI treatments for Major Depressive Disorder, was conducted with 529 subjects on an imputed dataset. While no variants of genome-wide significance were identified, various potentially interesting variants were identified that warrant further exploration. These findings have the potential to elucidate novel mechanisms underlying drug response for SSRIs. This work will be continued further, with machine learning and deep learning analyses to perform non-linear analyses and employing a biologist or geneticist to provide more specialized knowledge for interpretation of results.
ContributorsLeiter-Weintraub, Ethan (Author) / Dinu, Valentin (Thesis director) / Scotch, Matthew (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2024-05
187739-Thumbnail Image.png
Description
Concerns, such as global warming, greenhouse gas emissions, and changes in hydrological regimes, have been raised in response to the global ecosystem changes caused by humans. Understanding the ecosystem functions is crucial for assisting stakeholders in formulating viable plans to address the issues for a healthier planet. However, a systematic

Concerns, such as global warming, greenhouse gas emissions, and changes in hydrological regimes, have been raised in response to the global ecosystem changes caused by humans. Understanding the ecosystem functions is crucial for assisting stakeholders in formulating viable plans to address the issues for a healthier planet. However, a systematic evaluation of recent environmental changes and current ecosystem status, focusing on terrestrial ecosystem carbon-water trade-off, in the Lower Mekong Basin (LMB) is lacking. This dissertation involves: (1) examining the long-term spatiotemporal patterns of ecosystem conditions in response to gains and losses of the forest; (2) evaluating the current consumptive water use variation across all biome and land use types with remotely sensed evapotranspiration (ET) products; (3) analyzing the trade-off between terrestrial carbon and water stress condition during the photosynthesis process in response to different climatic/ecosystem conditions, and (4) developing a spatial optimization model to effectively determine possible reforestation/afforestation options considering the balance between water conservation and carbon fluxes. These studies were conducted with many recently developed algorithms and satellite imagery. This dissertation makes significant contributions and expands the knowledge of the variation in water consumption and carbon assimilation within the ecosystem when different conditions are present. In addition, the spatial optimization model was applied to the entire region to formulate possible reforestation plans under different water-carbon tradeoff scenarios for the first time. The findings and results of this research can be used to provide constructive suggestions to policymakers, managers, planners, government officials, and any other stakeholders in LMB to formulate policies and guidelines for the environmentally responsible and sustainable development of LMB.
ContributorsLi, Yubin (Author) / Myint, Soe (Thesis advisor) / Tong, Daoqin (Thesis advisor) / Muenich, Rebecca (Committee member) / Schaffer-Smith, Danica (Committee member) / Arizona State University (Publisher)
Created2023
168722-Thumbnail Image.png
Description
Vitamin D is a nutrient that is obtained through the diet and vitamin D supplementation and created from exposure to Ultraviolet B (UVB) radiation. While there are many factors that determine how much serum 25-hydroxyvitamin D (25(OH)D) concentration is in the body, little is known about how genetic variation in

Vitamin D is a nutrient that is obtained through the diet and vitamin D supplementation and created from exposure to Ultraviolet B (UVB) radiation. While there are many factors that determine how much serum 25-hydroxyvitamin D (25(OH)D) concentration is in the body, little is known about how genetic variation in vitamin D-related genes influences serum 25(OH)D concentrations resulting from daily vitamin D intake and exposure to direct sunlight. Previous studies show that common genetic variants rs10741657 (CYP2R1), rs4588 (GC), rs228678 (GC), and rs4516035 (VDR) act as moderators and alter the effect of outdoor time and vitamin D intake on serum 25(OH)D concentrations. The objective of this study is to analyze the associations between serum 25(OH)D concentrations resulting from outdoor time and vitamin D intake, and genetic risk scores (GRS) established from previous studies involving single nucleotide polymorphisms (SNP) located on or near genes involving vitamin D synthesis, transport, activation, and degradation in 102 Hispanic and Non-Hispanic adults in the San Diego County, California. This study is a secondary analysis of data from the Community of Mine study. Global Positioning System (GPS) data collected by the Qstarz GPS device worn by each participant was used to measure outdoor time, a proxy measurement for sun exposure time. Vitamin D intake was assessed using two 24-hour dietary recalls. Blood samples were measured for serum 25(OH)D concentrations. DNA was provided to assess each participant for the various genetic variants. Adjusted analyses of the GRS and serum 25(OH)D concentrations showed that individuals with high GRS (3-4) had lower serum 25(OH)D concentrations than individuals with low GRS (0-2) for both Nissen GRS and Rivera-Paredez GRS.
ContributorsAnderson, Heather Ray (Author) / Sears, Dorothy (Thesis advisor) / Alexon, Christy (Committee member) / Dinu, Valentin (Committee member) / Jankowska, Marta (Committee member) / Arizona State University (Publisher)
Created2022
187847-Thumbnail Image.png
Description
A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic)

A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic) cells. The numerical portion of this work (chapter 2) focuses on simulating GBM expansion in patients undergoing treatment for recurrence of tumor following initial surgery. The models are simulated on 3-dimensional brain geometries derived from magnetic resonance imaging (MRI) scans provided by the Barrow Neurological Institute. The study consists of 17 clinical time intervals across 10 patients that have been followed in detail, each of whom shows significant progression of tumor over a period of 1 to 3 months on sequential follow up scans. A Taguchi sampling design is implemented to estimate the variability of the predicted tumors to using 144 different choices of model parameters. In 9 cases, model parameters can be identified such that the simulated tumor contains at least 40 percent of the volume of the observed tumor. In the analytical portion of the paper (chapters 3 and 4), a positively invariant region for our 2-population model is identified. Then, a rigorous derivation of the critical patch size associated with the model is performed. The critical patch (KISS) size is the minimum habitat size needed for a population to survive in a region. Habitats larger than the critical patch size allow a population to persist, while smaller habitats lead to extinction. The critical patch size of the 2-population model is consistent with that of the Fisher-Kolmogorov-Petrovsky-Piskunov equation, one of the first reaction-diffusion models proposed for GBM. The critical patch size may indicate that GBM tumors have a minimum size depending on the location in the brain. A theoretical relationship between the size of a GBM tumor at steady-state and its maximum cell density is also derived, which has potential applications for patient-specific parameter estimation based on magnetic resonance imaging data.
ContributorsHarris, Duane C. (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric J. (Thesis advisor) / Preul, Mark C. (Committee member) / Crook, Sharon (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2023
Description
Circular RNAs (circRNAs) are a class of endogenous, non-coding RNAs that are formed when exons back-splice to each other and represent a new area of transcriptomics research. Numerous RNA sequencing (RNAseq) studies since 2012 have revealed that circRNAs are pervasively expressed in eukaryotes, especially in the mammalian brain. While their

Circular RNAs (circRNAs) are a class of endogenous, non-coding RNAs that are formed when exons back-splice to each other and represent a new area of transcriptomics research. Numerous RNA sequencing (RNAseq) studies since 2012 have revealed that circRNAs are pervasively expressed in eukaryotes, especially in the mammalian brain. While their functional role and impact remains to be clarified, circRNAs have been found to regulate micro-RNAs (miRNAs) as well as parental gene transcription and may thus have key roles in transcriptional regulation. Although circRNAs have continued to gain attention, our understanding of their expression in a cell-, tissue- , and brain region-specific context remains limited. Further, computational algorithms produce varied results in terms of what circRNAs are detected. This thesis aims to advance current knowledge of circRNA expression in a region specific context focusing on the human brain, as well as address computational challenges.

The overarching goal of my research unfolds over three aims: (i) evaluating circRNAs and their predicted impact on transcriptional regulatory networks in cell-specific RNAseq data; (ii) developing a novel solution for de novo detection of full length circRNAs as well as in silico validation of selected circRNA junctions using assembly; and (iii) application of these assembly based detection and validation workflows, and integrating existing tools, to systematically identify and characterize circRNAs in functionally distinct human brain regions. To this end, I have developed novel bioinformatics workflows that are applicable to non-polyA selected RNAseq datasets and can be used to characterize circRNA expression across various sample types and diseases. Further, I establish a reference dataset of circRNA expression profiles and regulatory networks in a brain region-specific manner. This resource along with existing databases such as circBase will be invaluable in advancing circRNA research as well as improving our understanding of their role in transcriptional regulation and various neurological conditions.
ContributorsSekar, Shobana (Author) / Liang, Winnie S (Thesis advisor) / Dinu, Valentin (Thesis advisor) / Craig, David (Committee member) / Liu, Li (Committee member) / Arizona State University (Publisher)
Created2018
156777-Thumbnail Image.png
Description
Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR)

Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR) ecosystems for purposes of orchestrating the user experiences of patients and clinicians. To date, the gap between knowledge representation and user-facing EHR integration has been considered an “implementation concern” requiring unscalable manual human efforts and governance coordination. Drafting a questionnaire engineered to meet the specifications of the HL7 CDS Knowledge Artifact specification, for example, carries no reasonable expectation that it may be imported and deployed into a live system without significant burdens. Dramatic reduction of the time and effort gap in the research and application cycle could be revolutionary. Doing so, however, requires both a floor-to-ceiling precoordination of functional boundaries in the knowledge management lifecycle, as well as formalization of the human processes by which this occurs.

This research introduces ARTAKA: Architecture for Real-Time Application of Knowledge Artifacts, as a concrete floor-to-ceiling technological blueprint for both provider heath IT (HIT) and vendor organizations to incrementally introduce value into existing systems dynamically. This is made possible by service-ization of curated knowledge artifacts, then injected into a highly scalable backend infrastructure by automated orchestration through public marketplaces. Supplementary examples of client app integration are also provided. Compilation of knowledge into platform-specific form has been left flexible, in so far as implementations comply with ARTAKA’s Context Event Service (CES) communication and Health Services Platform (HSP) Marketplace service packaging standards.

Towards the goal of interoperable human processes, ARTAKA’s treatment of knowledge artifacts as a specialized form of software allows knowledge engineers to operate as a type of software engineering practice. Thus, nearly a century of software development processes, tools, policies, and lessons offer immediate benefit: in some cases, with remarkable parity. Analyses of experimentation is provided with guidelines in how choice aspects of software development life cycles (SDLCs) apply to knowledge artifact development in an ARTAKA environment.

Portions of this culminating document have been further initiated with Standards Developing Organizations (SDOs) intended to ultimately produce normative standards, as have active relationships with other bodies.
ContributorsLee, Preston Victor (Author) / Dinu, Valentin (Thesis advisor) / Sottara, Davide (Committee member) / Greenes, Robert (Committee member) / Arizona State University (Publisher)
Created2018
156639-Thumbnail Image.png
Description
The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects

The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects are composed of representative species of bees and wasps, and all species of ants and termites. Much is known about their organizational structure, but remains to be discovered.

The success of social insects is dependent upon cooperative behavior and adaptive strategies shaped by natural selection that respond to internal or external conditions. The objective of my research was to investigate specific mechanisms that have helped shaped the structure of division of labor observed in social insect colonies, including age polyethism and nutrition, and phenomena known to increase colony survival such as egg cannibalism. I developed various Ordinary Differential Equation (ODE) models in which I applied dynamical, bifurcation, and sensitivity analysis to carefully study and visualize biological outcomes in social organisms to answer questions regarding the conditions under which a colony can survive. First, I investigated how the population and evolutionary dynamics of egg cannibalism and division of labor can promote colony survival. I then introduced a model of social conflict behavior to study the inclusion of different response functions that explore the benefits of cannibalistic behavior and how it contributes to age polyethism, the change in behavior of workers as they age, and its biological relevance. Finally, I introduced a model to investigate the importance of pollen nutritional status in a honeybee colony, how it affects population growth and influences division of labor within the worker caste. My results first reveal that both cannibalism and division of labor are adaptive strategies that increase the size of the worker population, and therefore, the persistence of the colony. I show the importance of food collection, consumption, and processing rates to promote good colony nutrition leading to the coexistence of brood and adult workers. Lastly, I show how taking into account seasonality for pollen collection improves the prediction of long term consequences.
ContributorsRodríguez Messan, Marisabel (Author) / Kang, Yun (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Kuang, Yang (Committee member) / Page Jr., Robert E (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2018
156753-Thumbnail Image.png
Description
Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling.

Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling. However, this approach is limited spatially and temporally in addition to being costly. In this study, the application of remotely sensed reflectance data from Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) and Landsat 8’s Operational Land Imager (OLI) along with data generated through field-sampling is used to gain a better understanding of the seasonal development of algal communities and levels of suspended particulates in the three main terminal reservoirs supplying water to the Phoenix metro area: Bartlett Lake, Lake Pleasant, and Saguaro Lake. Algal abundances, particularly the abundance of filamentous cyanobacteria, increased with warmer temperatures in all three reservoirs and reached the highest comparative abundance in Bartlett Lake. Prymnesiophytes (the class of algae to which the toxin-producing golden algae belong) tended to peak between June and August, with one notable peak occurring in Saguaro Lake in August 2017 during which time a fish-kill was observed. In the cooler months algal abundance was comparatively lower in all three lakes, with a more even distribution of abundance across algae classes. In-situ data from March 2017 to March 2018 were compared with algal communities sampled approximately ten years ago in each reservoir to understand any possible long-term changes. The findings show that the algal communities in the reservoirs are relatively stable, particularly those of the filamentous cyanobacteria, chlorophytes, and prymnesiophytes with some notable exceptions, such as the abundance of diatoms, which increased in Bartlett Lake and Lake Pleasant. When in-situ data were compared with Landsat-derived reflectance data, two-band combinations were found to be the best-estimators of chlorophyll-a concentration (as a proxy for algal biomass) and total suspended sediment concentration. The ratio of the reflectance value of the red band and the blue band produced reasonable estimates for the in-situ parameters in Bartlett Lake. The ratio of the reflectance value of the green band and the blue band produced reasonable estimates for the in-situ parameters in Saguaro Lake. However, even the best performing two-band algorithm did not produce any significant correlation between reflectance and in-situ data in Lake Pleasant. Overall, remotely-sensed observations can significantly improve our understanding of the water quality as measured by algae abundance and particulate loading in Arizona Reservoirs, especially when applied over long timescales.
ContributorsRussell, Jazmine Barkley (Author) / Neuer, Susanne (Thesis advisor) / Fox, Peter (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2018