Matching Items (348)
150779-Thumbnail Image.png
Description
Ponderosa pine forests are a dominant land cover type in semiarid montane areas. Water supplies in major rivers of the southwestern United States depend on ponderosa pine forests since these ecosystems: (1) receive a significant amount of rainfall and snowfall, (2) intercept precipitation and transpire water, and (3) indirectly influence

Ponderosa pine forests are a dominant land cover type in semiarid montane areas. Water supplies in major rivers of the southwestern United States depend on ponderosa pine forests since these ecosystems: (1) receive a significant amount of rainfall and snowfall, (2) intercept precipitation and transpire water, and (3) indirectly influence runoff by impacting the infiltration rate. However, the hydrologic patterns in these ecosystems with strong seasonality are poorly understood. In this study, we used a distributed hydrologic model evaluated against field observations to improve our understandings on spatial controls of hydrologic patterns, appropriate model resolution to simulate ponderosa pine ecosystems and hydrologic responses in the context of contrasting winter to summer transitions. Our modeling effort is focused on the hydrologic responses during the North American Monsoon (NAM), winter and spring periods. In Chapter 2, we utilized a distributed model explore the spatial controls on simulated soil moisture and temporal evolution of these spatial controls as a function of seasonal wetness. Our findings indicate that vegetation and topographic curvature are spatial controls. Vegetation controlled patterns during dry summer period switch to fine-scale terrain curvature controlled patterns during persistently wet NAM period. Thus, a climatic threshold involving rainfall and weather conditions during the NAM is identified when high rainfall amount (such as 146 mm rain in August, 1997) activates lateral flux of soil moisture and frequent cloudy cover (such as 42% cloud cover during daytime of August, 1997) lowers evapotranspiration. In Chapter 3, we investigate the impacts of model coarsening on simulated soil moisture patterns during the NAM. Results indicate that model aggregation quickly eradicates curvature features and its spatial control on hydrologic patterns. A threshold resolution of ~10% of the original terrain is identified through analyses of homogeneity indices, correlation coefficients and spatial errors beyond which the fidelity of simulated soil moisture is no longer reliable. Based on spatial error analyses, we detected that the concave areas (~28% of hillslope) are very sensitive to model coarsening and root mean square error (RMSE) is higher than residual soil moisture content (~0.07 m3/m3 soil moisture) for concave areas. Thus, concave areas need to be sampled for capturing appropriate hillslope response for this hillslope. In Chapter 4, we investigate the impacts of contrasting winter to summer transitions on hillslope hydrologic responses. We use a distributed hydrologic model to generate a consistent set of high-resolution hydrologic estimates. Our model is evaluated against the snow depth, soil moisture and runoff observations over two water years yielding reliable spatial distributions during the winter to summer transitions. We find that a wet winter followed by a dry summer promotes evapotranspiration losses (spatial averaged ~193 mm spring ET and ~ 600 mm summer ET) that dry the soil and disconnect lateral fluxes in the forested hillslope, leading to soil moisture patterns resembling vegetation patches. Conversely, a dry winter prior to a wet summer results in soil moisture increases due to high rainfall and low ET during the spring (spatially averaged 78 mm ET and 232 mm rainfall) and summer period (spatially averaged 147 mm ET and 247 mm rainfall) which promote lateral connectivity and soil moisture patterns with the signature of terrain curvature. An opposing temporal switch between infiltration and saturation excess runoff is also identified. These contrasting responses indicate that the inverse relation has significant consequences on hillslope water availability and its spatial distribution with implications on other ecohydrological processes including vegetation phenology, groundwater recharge and geomorphic development. Results from this work have implications on the design of hillslope experiments, the resolution of hillslope scale models, and the prediction of hydrologic conditions in ponderosa pine ecosystems. In addition, our findings can be used to select future hillslope sites for detailed ecohydrological investigations. Further, the proposed methodology can be useful for predicting responses to climate and land cover changes that are anticipated for the southwestern United States.
ContributorsMahmood, Taufique Hasan (Author) / Vivoni, Enrique R. (Thesis advisor) / Whipple, Kelin X. (Committee member) / Shock, Everett (Committee member) / Heimsath, Arjun M. (Committee member) / Ruddell, Benjamin (Committee member) / Arizona State University (Publisher)
Created2012
151223-Thumbnail Image.png
Description
Early spacecraft missions to Mars, including the Marnier and Viking orbiters and landers revealed a morphologically and compositionally diverse landscape that reshaped widely held views of Mars. More recent spacecraft including Mars Global Surveyor, Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, and the Mars Exploration Rovers have further refined, enhanced,

Early spacecraft missions to Mars, including the Marnier and Viking orbiters and landers revealed a morphologically and compositionally diverse landscape that reshaped widely held views of Mars. More recent spacecraft including Mars Global Surveyor, Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, and the Mars Exploration Rovers have further refined, enhanced, and diversified our understanding of Mars. In this dissertation, I take a multiple-path approach to planetary and Mars science including data analysis and instrument development. First, I present several tools necessary to effectively use new, complex datasets by highlighting unique and innovative data processing techniques that allow for the regional to global scale comparison of multiple datasets. Second, I present three studies that characterize several processes on early Mars, where I identify a regional, compositionally distinct, in situ, stratigraphically significant layer in Ganges and Eos Chasmata that formed early in martian history. This layer represents a unique period in martian history where primitive mantle materials were emplaced over large sections of the martian surface. While I originally characterized this layer as an effusive lava flow, based on the newly identified regional or global extent of this layer, I find the only likely scenario for its emplacement is the ejecta deposit of the Borealis Basin forming impact event. I also re-examine high thermal inertia, flat-floored craters identified in Viking data and conclude they are typically more mafic than the surrounding plains and were likely infilled by primitive volcanic materials during, or shortly after the Late Heavy Bombardment. Furthermore, the only plausible source for these magmas is directly related to the impact process, where mantle decompression melting occurs as result of the removal of overlying material by the impactor. Finally, I developed a new laboratory microscopic emission and reflectance spectrometer designed to help improve the interpretation of current remote sensing or in situ data from planetary bodies. I present the design, implementation, calibration, system performance, and preliminary results of this instrument. This instrument is a strong candidate for the next generation in situ rover instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context.
ContributorsEdwards, Christopher (Author) / Christensen, Philip R. (Thesis advisor) / Bell, James (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda B (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2012
151140-Thumbnail Image.png
Description
Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding

Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding of the diagenetic processes that may affect molybdenum and uranium isotopes entering the rock record. Using samples from the Black Sea water column, the first water column profile of 238U/235U variations from a modern euxinic basin has been measured. This profile allows the direct determination of the 238U/235U fractionation factor in a euxinic marine setting. More importantly however, these data demonstrate the extent of Rayleigh fractionation of U isotopes that can occur in euxinic restricted basins. Because of this effect, the offset of 238U/235U between global average seawater and coeval black shales deposited in restricted basins is expected to depend on the degree of local uranium drawdown from the water column, potentially complicating the interpretation 238U/235U paleorecords. As an alternative to the black shales typically used for paleoredox reconstructions, molybdenum and uranium isotope variations in bulk carbonate sediments from the Bahamas are examined. The focus of this work was to determine what processes, if any, fractionate molybdenum and uranium isotopes during incorporation into bulk carbonate sediments and their subsequent diagenesis. The results demonstrate that authigenic accumulation of molybdenum and uranium from anoxic and sulfidic pore waters is a dominant process controlling the concentration and isotopic composition of these sediments during early diagenesis. Examination of ODP drill core samples from the Bahamas reveals similar behavior for sediments during the first ~780ka of burial, but provides important examples where isolated cores and samples occasionally demonstrate additional fractionation, the cause of which remains poorly understood.
ContributorsRomaniello, Stephen J. (Author) / Anbar, Ariel (Thesis advisor) / Hartnett, Hilairy (Committee member) / Herrmann, Achim (Committee member) / Shock, Everett (Committee member) / Wadhwa, Meenakshi (Committee member) / Arizona State University (Publisher)
Created2012
148137-Thumbnail Image.png
Description

This thesis looks at how Latinx communities in Wyoming, despite recognizing the impossibility of overcoming the traditional conservative autocracy, still utilize their identity as a political response to unify Latinx communities throughout the state. The project draws from oral histories conducted with Latinx/Chicanx community members in Wyoming, including professors, legislators,

This thesis looks at how Latinx communities in Wyoming, despite recognizing the impossibility of overcoming the traditional conservative autocracy, still utilize their identity as a political response to unify Latinx communities throughout the state. The project draws from oral histories conducted with Latinx/Chicanx community members in Wyoming, including professors, legislators, and everyday citizens.

ContributorsFranco, David (Author) / Fonseca-Chávez, Vanessa (Thesis director) / Martínez, Rafael (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148323-Thumbnail Image.jpg
Description

Uniforms and logos are an essential part of sports teams and are created with the intention of representing the city and state of their respective teams. More than a uniform: How culture influences the creation of Arizona sports logos and jerseys presents a look at the conversations and processes undergone

Uniforms and logos are an essential part of sports teams and are created with the intention of representing the city and state of their respective teams. More than a uniform: How culture influences the creation of Arizona sports logos and jerseys presents a look at the conversations and processes undergone before teams are able to unveil their new threads. Four local professional teams are involved with this project: Phoenix Suns, Arizona Diamondbacks, Arizona Coyotes and Arizona Cardinals. Members from each of the organizations were interviewed, in addition to Greg Fisher of Fisher Design. Information was gathered from each of those interviews in addition to research done on the history of each of the team’s uniforms. The information was then created into a documentary that consists of visual and verbal components. The film highlights how each team attempts to represent Arizona and its culture when it comes to what they are wearing on the field, court or ice. The interviews capture the mindset of creative teams as they explore growing new ideas and looks, in addition to a historical delve into two of the team’s debuts in the 1990s. Many of Arizona’s sports teams have much more behind their logos and jerseys than meets the eye. The project taught me how adapt broadcast skills into documentary style storytelling and how important visuals are for longer features. The interviews showed that so many things are taken into consideration when designing a sports logo or uniform and the process can take either months or years to finally reach fruition.

ContributorsNoel, Adam Jude (Author) / Dieffenbach, Paola (Thesis director) / Easley, Isaac (Committee member) / College of Integrative Sciences and Arts (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The COVID-19 pandemic began in March of 2020 and drastically affected the global human population. Millions of people died due to a SARS-CoV-2 infection while many who survived developed devastating sequelae of the disease. In addition, the closure of schools and businesses led to international economic struggle in the year

The COVID-19 pandemic began in March of 2020 and drastically affected the global human population. Millions of people died due to a SARS-CoV-2 infection while many who survived developed devastating sequelae of the disease. In addition, the closure of schools and businesses led to international economic struggle in the year 2020 as global economies declined. Since the beginning of the pandemic, over 200,000 scientific articles have been published and compiled into a database that grows daily— a rare occurrence within the scientific community. This thesis uses natural language processing tools via Python and VOSviewer software to perform a bibliometric analysis on 205,712 papers published between January of 2020 and February of 2021 pertaining to COVID-19. We first investigate how to analyze these publications most effectively in terms of title versus abstract keyword searches, we further obtain the focus of the current scientific literature via co-occurrence analysis and clustering, and we at last discuss the time evolution of these topics over the course of 14 months.

ContributorsLovell, Madison Ray (Author) / Zheng, Wenwei (Thesis director) / Melkozernov, Alexander (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136287-Thumbnail Image.png
Description
Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine

Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine has been notoriously difficult to produce. To overcome this, a vaccine using non-structural protein 3 (NS3) as a target to elicit a T cell specific immune response is thought to be a possible strategy for eliciting a protective immune response against hepatitis C infection. In this paper, a recombinant strain of measles virus (MV) that expresses HCV NS3 protein was analyzed. The replication fitness of this recombinant virus also indicates that this construct replicates at a higher rate than parental measles strain. It is also demonstrated through western blot analysis of protein expression and immunofluorescence that this recombinant virus expresses both the inserted HCV NS3 protein, as well as native measles proteins.
ContributorsWoell, Dana Marie (Author) / Reyes del Valle, Jorge (Thesis director) / Nickerson, Cheryl (Committee member) / Julik, Emily (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
135647-Thumbnail Image.png
Description
Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard

Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard water supplies. In this work, we used a spaceflight analogue culture system to better understand how the microgravity environment can influence the pathogenesis-related characteristics of Burkholderia cepacia complex (Bcc), an opportunistic pathogen previously recovered from the ISS water system. The results of the present study suggest that there may be important differences in how this pathogen can respond and adapt to spaceflight and other low fluid shear environments encountered during their natural life cycles. Future studies are aimed at understanding the underlying mechanisms responsible for these phenotypes.
ContributorsKang, Bianca Younseon (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147638-Thumbnail Image.png
Description

The United States’ War on Drugs declared in 1971 by President Richard Nixon and revamped by President Reagan in the 1980s has been an objectively failed initiative with origins based in racism and oppression. After exploring the repercussions of this endeavor for societies and individuals around the world, global researchers

The United States’ War on Drugs declared in 1971 by President Richard Nixon and revamped by President Reagan in the 1980s has been an objectively failed initiative with origins based in racism and oppression. After exploring the repercussions of this endeavor for societies and individuals around the world, global researchers and policymakers have declared that the policies and institutions created to fight the battle have left devastation in their wake. Despite high economic and social costs, missed opportunities in public health and criminal justice sectors, and increasing limits on our personal freedoms, all the measures taken to eradicate drug abuse and trafficking have been unsuccessful. Not only that, but militarized police tactics, mass incarceration, and harsh penalties that stifle opportunities for rehabilitation, growth, and change disproportionately harm poor and minority communities. <br/>Because reform in U.S. drug policy is badly needed, the goals of America’s longest war need to be reevaluated, implications of the initiative reexamined, and alternative strategies reconsidered. Solutions must be propagated from a diverse spectrum of contributors and holistic understanding through scientific research, empirical evidence, innovation, public health, social wellbeing, and measurable outcomes. But before we can know where we should be headed, we need to appreciate how we got to where we are. This preliminary expository investigation will explore and outline the history of drug use and prohibition in the United States before the War on Drugs was officially declared. Through an examination of the different patterns of substance use, evolving civil tolerance of users, racially-charged anti-drug misinformation/propaganda campaigns, and increasingly restrictive drug control policies, a foundation for developing solutions and strengths-based strategies for drug reform will emerge.

ContributorsSherman, Brooke (Author) / Jimenez-Arista, Laura (Thesis director) / Mitchell, Ojmarrh (Committee member) / College of Integrative Sciences and Arts (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147752-Thumbnail Image.png
Description

I conducted a literature review of articles pertaining to the history and treatment of rats. After outlining all of the relevant connections, I argue that as a result of people's conceptions about rats, rats do not receive the same respect and protections afforded other animals, such as cats and dogs,

I conducted a literature review of articles pertaining to the history and treatment of rats. After outlining all of the relevant connections, I argue that as a result of people's conceptions about rats, rats do not receive the same respect and protections afforded other animals, such as cats and dogs, in the laboratory and beyond. I present both negative and positive conceptions about rats and the realities of these conceptions. Finally, I talk about the changes that need to take place in laboratory research, why animals are still used in research today, and the alternatives that exist to animal models.

Created2021-05