Matching Items (580)
Filtering by

Clear all filters

152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
150711-Thumbnail Image.png
Description
In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances

In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances the center flicker response of horizontal cells. The underlying mechanism for the feedback is still unclear but competing hypotheses have been proposed. One is the GABA hypothesis, which states that the feedback is mediated by gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter released from horizontal cells. Another is the ephaptic hypothesis, which contends that the feedback is non-GABAergic and is achieved through the modulation of electrical potential in the intersynaptic cleft between cones and horizontal cells. In this study, a continuum spine model of the cone-horizontal cell synaptic circuitry is formulated. This model, a partial differential equation system, incorporates both the GABA and ephaptic feedback mechanisms. Simulation results, in comparison with experiments, indicate that the ephaptic mechanism is necessary in order for the model to capture the major spatial and temporal dynamics of the BIFE effect. In addition, simulations indicate that the GABA mechanism may play some minor modulation role.
ContributorsChang, Shaojie (Author) / Baer, Steven M. (Thesis advisor) / Gardner, Carl L (Thesis advisor) / Crook, Sharon M (Committee member) / Kuang, Yang (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2012
148189-Thumbnail Image.png
Description

This study was conducted to determine the difference in compressive strength between decayed and healthy teeth. The teeth were subjected to a compressive force to simulate the process of mastication. This was done to show that healthy teeth would be better at handling these compressive forces since they have more

This study was conducted to determine the difference in compressive strength between decayed and healthy teeth. The teeth were subjected to a compressive force to simulate the process of mastication. This was done to show that healthy teeth would be better at handling these compressive forces since they have more enamel. 26 teeth samples were collected (19 molars, 4 canines, and 3 premolars) evenly distributed between healthy and decayed. The samples were dimensionally analyzed using electronic calipers and then categorized as either decayed or healthy. The samples were then placed in a nut bolt with epoxy so that the samples could be compressed. Each sample was recorded on video while they were being exposed to the compressive force. This was done to observe how the samples were coming in contact with the Shimadzu compression machine. The amount of force that was required for the samples to exhibit the first point of breakage was recorded by the machine in pounds of force. Various analyses were conducted to determine relationships between several variables. The results showed that as the total and occlusal surface area increased, so did the amount of force the samples could absorb before breakage. As the machine came in contact with more cusps among the molar samples, those samples were able to absorb a larger compressive force. The average force that the decayed and healthy molar samples endured before breakage was roughly even, with the decayed samples average being slightly greater.

ContributorsHenscheid, Keaton J (Author) / Quaranta, Kimberly (Thesis director) / Peoples, Samuel (Committee member) / College of Health Solutions (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148321-Thumbnail Image.png
Description

This study examines the effectiveness of two modes of exercise on inhibitory control in adults with Down Syndrome (DS). Thirteen participants attended four sessions: a baseline assessment, an Assisted Cycling Therapy (ACT) session, a Resistance Training (RT) session, and a session of No Training (NT). In the baseline assessment, 1-repetition

This study examines the effectiveness of two modes of exercise on inhibitory control in adults with Down Syndrome (DS). Thirteen participants attended four sessions: a baseline assessment, an Assisted Cycling Therapy (ACT) session, a Resistance Training (RT) session, and a session of No Training (NT). In the baseline assessment, 1-repetition max (1RM) measurements and voluntary pedal rate measurements were taken. In the resistance training session, the leg press, chest press, seated row, leg curl, shoulder press, and latissimus pulldown were performed. In the cycling intervention, the participant completed 30 minutes of cycling. The Erikson Flanker task was administered prior to each session (i.e., pretest) and after the intervention (i.e., post-test). The results were somewhat consistent with the hypothesis that inhibition time improved more following RT and ACT than NT. there was also a significant difference between ACT and NT. Additionally, it was hypothesized that all measures would improve following each acute exercise intervention, but the most significant improvements were seen following ACT. In conclusion, an acute session of ACT demonstrated a significant trend towards improvements in inhibitory control in adults with DS which we interpreted using a model of neural changes.

ContributorsHayes, Claire (Author) / Ringenbach, Shannon (Thesis director) / Arnold, Nate (Committee member) / Rand, Miya (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148324-Thumbnail Image.png
Description

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects mood<br/>state in healthy young adults. This was a randomized, single blinded controlled trial consisting of<br/>25 subjects. Participants were randomly assigned to either the vinegar group (consumed 2<br/>tablespoons of liquid vinegar diluted in one cup water twice daily with meals) or the control<br/>group (consumed one vinegar pill daily with a meal), and the intervention lasted 4 weeks.<br/>Subjects completed mood questionnaires pre- and post-intervention. Results showed a significant<br/>improvement in CES-D and POMS-Depression scores for the vinegar group compared to the<br/>control. This study suggests that vinegar ingestion may improve depressive symptoms in healthy<br/>young adults.

ContributorsWilliams, Susanna (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137151-Thumbnail Image.png
Description
Social structure is the product of the costs and benefits of group living. Dyadic social bonds in female chacma baboons are strong and long-standing, conferring fitness benefits upon both individuals while contributing to a greater social structure. Longitudinal grooming data collected from 2001-2007 from Moremi Game Reserve, Botswana, illuminate social

Social structure is the product of the costs and benefits of group living. Dyadic social bonds in female chacma baboons are strong and long-standing, conferring fitness benefits upon both individuals while contributing to a greater social structure. Longitudinal grooming data collected from 2001-2007 from Moremi Game Reserve, Botswana, illuminate social network dynamics of 50 female chacma baboons. Utilizing social network analysis (SNA), we analyzed social structure above the level of the dyad to see if attribute data (age, rank, and number of close female kin) was predictive of network location. Our SNA data was longitudinal, unbalanced, and continuous. We therefore used linear mixed-effects models (LMEs) and respective AIC/BIC values to choose the most likely predictive attributes for each SNA metric. From the chosen LMEs, rank was present most often. High rank predicted a higher frequency of outward grooming, an overall lower number of grooming partners, and a less extensive social network. It appears that high-ranking females have a fewer number of social bonds than low-ranking females, but that they are stronger. Considering that enduring social bonds result in increased offspring longevity, future studies include examining the potential adaptive value of weak, transient, more numerous social bonds.
ContributorsBest, Megan Renee (Author) / Silk, Joan B. (Thesis director) / Schaefer, David (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137816-Thumbnail Image.png
Description
Childhood obesity is a growing public health concern in the United States. For several years, many interventions have been established to reduce the prevalence of childhood obesity. However, these interventions have not adequately utilized existing models of behavior change, and as a result, have been unsuccessful in increasing levels of

Childhood obesity is a growing public health concern in the United States. For several years, many interventions have been established to reduce the prevalence of childhood obesity. However, these interventions have not adequately utilized existing models of behavior change, and as a result, have been unsuccessful in increasing levels of physical activity and healthy dietary intake. One such model of change, the Transtheoretical Model, views behavior change as occurring through a series of stages with progression through the stages being facilitated by cognitive and behavioral processes. Within these processes the constructs of consciousness-raising, helping relationships, and self-efficacy have been shown to be most influential in changing behaviors. Thus, the objective of this paper is to evaluate the effectiveness of such constructs and establish a multi-faceted approach to combat this epidemic.
ContributorsWang, Janice (Author) / Broman, Tannah (Thesis director) / Hoffner, Kristin (Committee member) / Baldwin, Marjorie (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2012-12
137840-Thumbnail Image.png
Description
Children's wellbeing has been of utmost concern to society, and recently this topic has taken a particular focus in both health and achievement. As the focus shifts towards promoting a healthier and more academically successful youth, the relationship between the two warrants investigation. Specifically, the relationship between physical fitness and

Children's wellbeing has been of utmost concern to society, and recently this topic has taken a particular focus in both health and achievement. As the focus shifts towards promoting a healthier and more academically successful youth, the relationship between the two warrants investigation. Specifically, the relationship between physical fitness and academic performance (i.e. grades) in 4th grade students was assessed. A cross-sectional design was used to assess physical fitness of children (M=9.39 years) by means of the FITNESSGRAM assessment tool. Third-quarter grades were used to measure academic performance. Relationships between the variables were determined through bivariate plots, Pearson product moment correlation analysis, independent t-tests, and a three-step regression analysis. The results show a significant relationship between students' aerobic fitness and academic performance. Furthermore, the findings of this study suggest incremental validity between aerobic fitness and academic performance, thus implying predictive value associated with increased physical fitness and academic achievement.
ContributorsMoore, Shannon (Author) / Kulinna, Pamela (Thesis director) / Hoffner, Kristin (Committee member) / Stylianou, Michalis (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2012-12