Matching Items (67)
Filtering by

Clear all filters

151725-Thumbnail Image.png
Description
Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina

Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas.
ContributorsPierini, Nicole A (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhi-Hua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
161617-Thumbnail Image.png
Description
In the Rare-earth-Tri-telluride family, (RTe3s) [R=La, Ce, Nd, Sm, Gd, Tb, Dy, Er, Ho, Tm] the emergence of Charge Density Waves, (CDW) has been under investigation for a long time due to broadly tunable properties by either chemical substitution or pressure application. These quasi 2D Layered materials RTe3s undergo Fermi

In the Rare-earth-Tri-telluride family, (RTe3s) [R=La, Ce, Nd, Sm, Gd, Tb, Dy, Er, Ho, Tm] the emergence of Charge Density Waves, (CDW) has been under investigation for a long time due to broadly tunable properties by either chemical substitution or pressure application. These quasi 2D Layered materials RTe3s undergo Fermi Surface Nesting leading to CDW instability. CDWs are electronic instabilities found in low-dimensional materials with highly anisotropic electronic structures. Since the CDW is predominantly driven by Fermi-surface (FS) nesting, it is especially sensitive to pressure-induced changes in the electronic structure. The FS of RTe3s is a function of p-orbitals of Tellurium atoms, which are arranged in two adjacent planes in the crystal structure. Although the FS and electronic structure possess a nearly four-fold symmetry, RTe3s form an incommensurate CDW.This dissertation is structured as follows: Chapter 1 includes basic ideas of Quantum materials, followed by an introduction to CDW and RTe3s. In Chapter 2, there are fundamentals of crystal growth by Chemical Vapor Transport, including various precursors, transport agent, temperature gradient, and rate of the reaction. After the growth, the crystals were confirmed for lattice vibrations by Raman, for composition by Energy Dispersive Spectroscopy; crystal structure and orientation were confirmed by X-ray Diffraction; magnetic ordering was established by Vibrating sample measurement. Detailed CDW study was done on various RTe3s by Raman spectroscopy. The basic mechanism and instrumentations used in these characterizations are explained in Chapter 3. Chapter 4 includes experimental data for crystal growth and results of these characterizations for Parent RTe3s. Chapter 5 includes fundamental insights on Cationic alloying of RTe3s, along with one alloy system’s crystal growth and characterization. This work tries to explain the behavior of CDW by a Temperature-dependent Raman study of RTe3s established the CDW transition temperature accompanied by Phonon softening; Angle-resolved Raman data confirming the nearly four-fold symmetry; thickness-dependent Raman spectroscopy resulting in the conclusion that as thickness decreases CDW transition temperature increases. Also, CDW transition is analyzed as a function of alloying.
ContributorsAttarde, Yashika (Author) / Tongay, Sefaattin (Thesis advisor) / Botana, Antia (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021
Description
Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of

Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of biomimicry and structural complexity of 2D models. As such, there is a critical need to develop a 3D, biomimetic human cardiac tissue within precisely engineered in vitro platforms. This PhD dissertation involved development of an innovative anisotropic 3D human stem cell-derived cardiac tissue on-a-chip model (i.e., heart on-a-chip), with an enhanced maturation tissue state, as demonstrated through extensive biological assessments. To demonstrate the potential of the platform to study cardiac-specific diseases, the developed heart on-a-chip was used to model myocardial infarction (MI) due to exposure to hypoxia. The successful induction of MI on-a-chip (heart attack-on-a-chip) was evidenced through fibrotic tissue response, contractile dysregulation, and transcriptomic regulation of key pathways.This dissertation also described incorporation of CRISPR/Cas9 gene-editing to create a human induced pluripotent stem cell line (hiPSC) with a mutation in KCNH2, the gene implicated in Long QT Syndrome Type 2 (LQTS2). This novel stem cell line, combined with the developed heart on-a-chip technology, led to creation of a 3D human cardiac on-chip tissue model of LQTS2 disease.. Extensive mechanistic biological and electrophysiological characterizations were performed to elucidate the mechanism of R531W mutation in KCNH2, significantly adding to existing knowledge about LQTS2. In summary, this thesis described creation of a LQTS2 cardiac on-a-chip model, incorporated with gene-edited hiPSC-cardiomyocytes and hiPSC-cardiac fibroblasts, to study mechanisms of LQTS2. Overall, this dissertation provides broad impact for fundamental studies toward cardiac biological studies as well as drug screening applications. Specifically, the developed heart on-a-chip from this dissertation provides a unique alternative platform to animal testing and 2D studies that recapitulates the human myocardium, with capabilities to model critical CVDs to study disease mechanisms, and/or ultimately lead to development of future therapeutic strategies.
ContributorsVeldhuizen, Jaimeson (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Ebrahimkhani, Mo (Committee member) / Migrino, Raymond Q (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
171604-Thumbnail Image.png
Description
Skin wounds can be caused by traumatic lacerations or incisions which disrupt the structural and functional integrity of the skin. Wound closure and primary intention treatment of the wound as soon as possible is crucial to avoid or minimize the risk of infection that can result in a compromised healing

Skin wounds can be caused by traumatic lacerations or incisions which disrupt the structural and functional integrity of the skin. Wound closure and primary intention treatment of the wound as soon as possible is crucial to avoid or minimize the risk of infection that can result in a compromised healing rate or advanced functional intricacy. The gold standard treatment for skin wound healing is suturing. Light-activated tissue sealing is an appealing alternative to sutures as it seals the wound edges minimizing the risk of infection and scarring, especially when utilized along with biodegradable polymeric biomaterials in the wound bed. Silk fibroins can be used as a biodegradable biomaterial that possesses properties supporting cell migration and proliferation in the tissue it interacts with. In addition, histamine treatment is shown to have extensive effects on cellular functions promoting wound healing. Here, the evaluation of Laser-activated Sealants (LASE) consisting of silk fibroin films induced with Indocyanine Green dye in a wound sealed with laser in the presence of Histamine receptor agonists H1R, H2R and H4R take place. The results were evaluated using Trans-epidermal Water Loss (TEWL), histological and analytical techniques where immune cell biomarkers Arginase-1, Ly6G, iNOS, Alpha-SMA, Proliferating Cell Nuclear Antigen (PCNA), and E-Cadherin were used to study the activity of specific cells such as macrophages, neutrophils, and myofibroblasts that aid in wound healing. PBS was used as a control for histamine receptor agonists. It was found that TEWL increased when treated with H1 receptor agonists while decreasing significantly in H2R and H4R-treated wounds. Arginase-1 activity improved, while it displayed an inverse relationship compared to iNOS. H4R agonist escalated Alpha-SMA cells, while others did not have any significant difference. Ly6G activity depleted in all histamine agonists significantly, while PCNA and E-Cadherin failed to show a positive or negative effect.
ContributorsPatel, Dirghau Manishbhai (Author) / Rege, Kaushal (Thesis advisor) / Massia, Stephen (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2022
171472-Thumbnail Image.png
Description
The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime

The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime editing represents great promise in the design of new gene therapies and disease models where editing was previously not possible using current gene editing techniques. Despite advancements in genome modification technologies, parallel enrichment strategies of edited cells remain lagging behind in development. To this end, this project aimed to enhance prime editing using transient reporter for editing enrichment (TREE) technology to develop a method for the rapid generation of clonal isogenic cell lines for disease modeling. TREE uses an engineered BFP variant that upon a C-to-T conversion will convert to GFP after target modification. Using flow cytometry, this BFP-to-GFP conversion assay enables the isolation of edited cell populations via a fluorescent reporter of editing. Prime induced nucleotide engineering using a transient reporter for editing enrichment (PINE-TREE), pairs prime editing with TREE technology to efficiently enrich for prime edited cells. This investigation revealed PINE-TREE as an efficient editing and enrichment method compared to a conventional reporter of transfection (RoT) enrichment strategy. Here, PINE-TREE exhibited a significant increase in editing efficiencies of single nucleotide conversions, small insertions, and small deletions in multiple human cell types. Additionally, PINE-TREE demonstrated improved clonal cell editing efficiency in human induced pluripotent stem cells (hiPSCs). Most notably, PINE-TREE efficiently generated clonal isogenic hiPSCs harboring a mutation in the APOE gene for in vitro modeling of Alzheimer’s Disease. Collectively, results gathered from this study exhibited PINE-TREE as a valuable new tool in genetic engineering to accelerate the generation of clonal isogenic cell lines for applications in developmental biology, disease modeling, and drug screening.
ContributorsKostes, William Warner (Author) / Brafman, David (Thesis advisor) / Jacobs, Bertram (Committee member) / Lapinaite, Audrone (Committee member) / Tian, Xiaojun (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2022
190931-Thumbnail Image.png
Description
In the last few decades, extensive research efforts have been focused on scaling down silicon-based complementary metal-oxide semiconductor (CMOS) technology to enable the continuation of Moore’s law. State-of-art CMOS includes fully depleted silicon-on-insulator (FDSOI) field-effect-transistors (FETs) with ultra-thin silicon channels (6 nm), as well as other three-dimensional (3D) device architectures

In the last few decades, extensive research efforts have been focused on scaling down silicon-based complementary metal-oxide semiconductor (CMOS) technology to enable the continuation of Moore’s law. State-of-art CMOS includes fully depleted silicon-on-insulator (FDSOI) field-effect-transistors (FETs) with ultra-thin silicon channels (6 nm), as well as other three-dimensional (3D) device architectures like Fin-FETs, nanosheet FETs, etc. Significant research efforts have characterized these technologies towards various applications, and at different conditions including a wide range of temperatures from room temperature (300 K) down to cryogenic temperatures. Theoretical efforts have studied ultrascaled devices using Landauer theory to further understand their transport properties and predict their performance in the quasi-ballistic regime.Further scaling of CMOS devices requires the introduction of new semiconducting channel materials, as now established by the research community. Here, two-dimensional (2D) semiconductors have emerged as a promising candidate to replace silicon for next-generation ultrascaled CMOS devices. These emerging 2D semiconductors also have applications beyond CMOS, for example in novel memory, neuromorphic, and spintronic devices. Graphene is a promising candidate for spintronic devices due to its outstanding spin transport properties as evidenced by numerous studies in non-local lateral spin valve (LSV) geometries. The essential components of graphene-based LSV, such as graphene FETs, metal-graphene contacts, and tunneling barriers, were individually investigated as part of this doctoral dissertation. In this work, several contributions were made to these CMOS and beyond CMOS technologies. This includes comprehensive characterization and modeling of FDSOI nanoscale FETs from room temperature down to cryogenic temperatures. Using Landauer theory for nanoscale transistors, FDSOI devices were analyzed and modeled under quasi-ballistic operation. This was extended towards a virtual-source modeling approach that accounts for temperature-dependent quasi-ballistic transport and back-gate biasing effects. Additionally, graphene devices with ultrathin high-k gate dielectrics were investigated towards FETs, non-volatile memory, and spintronic devices. New contributions were made relating to charge trapping effects and their impact on graphene device electrostatics (Dirac voltage shifts) and transport properties (impact on mobility and conductivity). This work also studied contact resistance and tunneling effects using transfer length method (TLM) graphene FET structures and magnetic tunneling junction (MTJ) towards graphene-based LSV.
ContributorsZhou, Guantong (Author) / Sanchez Esqueda, Ivan (Thesis advisor) / Vasileska, Dragica (Committee member) / Tongay, Sefaattin (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2023
190897-Thumbnail Image.png
Description
The research of alternative materials and new device architectures to exceed the limits of conventional silicon-based devices has been sparked by the persistent pursuit of semiconductor technology scaling. The development of tungsten diselenide (WSe2) and molybdenum disulfide (MoS2), well-known member of the transition metal dichalcogenide (TMD) family, has made great

The research of alternative materials and new device architectures to exceed the limits of conventional silicon-based devices has been sparked by the persistent pursuit of semiconductor technology scaling. The development of tungsten diselenide (WSe2) and molybdenum disulfide (MoS2), well-known member of the transition metal dichalcogenide (TMD) family, has made great strides towards ultrascaled two-dimensional (2D) field-effect-transistors (FETs). The scaling issues facing silicon-based complementary metal-oxide-semiconductor (CMOS) technologies can be solved by 2D FETs, which show extraordinary potential.This dissertation provides a comprehensive experimental analysis relating to improvements in p-type metal-oxide-semiconductor (PMOS) FETs with few-layer WSe2 and high-κ metal gate (HKMG) stacks. Compared to this works improved methods, standard metallization (more damaging to underlying channel) results in significant Fermi-level pinning, although Schottky barrier heights remain small (< 100 meV) when using high work function metals. Temperature-dependent analysis reveals a dominant contribution to contact resistance from the damaged channel access region. Thus, through less damaging metallization methods combined with strongly scaled HKMG stacks significant improvements were achieved in contact resistance and PMOS FET overall performance. A clean contact/channel interface was achieved through high-vacuum evaporation and temperature-controlled stepped deposition. Theoretical analysis using a Landauer transport adapted to WSe2 Schottky barrier FETs (SB-FETs) elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance towards the ultimate CMOS scaling limit. Next, this dissertation discusses how device electrical characteristics are affected by scaling of equivalent oxide thickness (EOT) and by adopting double-gate FET architectures, as well as how this might support CMOS scaling. An improved gate control over the channel is made possible by scaling EOT, improving on-off current ratios, carrier mobility, and subthreshold swing. This study also elucidates the impact of EOT scaling on FET gate hysteresis attributed to charge-trapping effects in high-κ-dielectrics prepared by atomic layer deposition (ALD). These developments in 2D FETs offer a compelling alternative to conventional silicon-based devices and a path for continued transistor scaling. This research contributes to ongoing efforts in 2D materials for future semiconductor technologies. Finally, this work introduces devices based on emerging Janus TMDs and bismuth oxyselenide (Bi2O2Se) layered semiconductors.
ContributorsPatoary, Md Naim Hossain (Author) / Sanchez Esqueda, Ivan (Thesis advisor) / Tongay, Sefaattin (Committee member) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
189347-Thumbnail Image.png
Description
Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging.

Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging. Moreover, there is no fixed framework to identify the doping concentration, which impedes their process integration for future commercialization. This work utilizes the Neutron Transmutation Doping technique to control the doping uniformly and precisely in TMDCs. Rhenium and Tin dopants are introduced in Tungsten- and Indium-based Chalcogenides, respectively. Fine-tuning over 0.001% doping level is achieved. Precise analytical techniques such as Gamma spectroscopy and Secondary Ion Mass Spectrometry are used to quantify ultra-low doping levels ranging from 0.005-0.01% with minimal error. Dopants in 2D TMDCs often exhibit a broad stokes-shifted emission, with high linewidths, due to extrinsic effects such as substrate disorder and surface adsorbates. A well-defined bound exciton emission induced by Rhenium dopants in monolayer WSe2 and WS2 at liquid nitrogen temperatures is reported along with specific annealing regimes to minimize the defects induced in the Neutron Transmutation process. This work demonstrates a framework for Neutron Doping in 2D materials, which can be a scalable process for controlling doping and doping-induced effects in 2D materials.
ContributorsLakhavade, Sushant Sambhaji (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2023
171943-Thumbnail Image.png
Description
In the past decade, 2D materials especially transition metal dichalcogenides (TMDc), have been studied extensively for their remarkable optical and electrical properties arising from their reduced dimensionality. A new class of materials developed based on 2D TMDc that has gained great interest in recent years is Janus crystals. In contrast

In the past decade, 2D materials especially transition metal dichalcogenides (TMDc), have been studied extensively for their remarkable optical and electrical properties arising from their reduced dimensionality. A new class of materials developed based on 2D TMDc that has gained great interest in recent years is Janus crystals. In contrast to TMDc, Janus monolayer consists of two different chalcogen atomic layers between which the transition metal layer is sandwiched. This structural asymmetry causes strain buildup or a vertically oriented electric field to form within the monolayer. The presence of strain brings questions about the materials' synthesis approach, particularly when strain begins to accumulate and whether it causes defects within monolayers.The initial research demonstrated that Janus materials could be synthesized at high temperatures inside a chemical vapor deposition (CVD) furnace. Recently, a new method (selective epitaxy atomic replacement - SEAR) for plasma-based room temperature Janus crystal synthesis was proposed. In this method etching and replacing top layer chalcogen atoms of the TMDc monolayer happens with reactive hydrogen and sulfur radicals. Based on Raman and photoluminescence studies, the SEAR method produces high-quality Janus materials. Another method used to create Janus materials was the pulsed laser deposition (PLD) technique, which utilizes the interaction of sulfur/selenium plume with monolayer to replace the top chalcogen atomic layer in a single step. The goal of this analysis is to characterize microscale defects that appear in 2D Janus materials after they are synthesized using SEAR and PLD techniques. Various microscopic techniques were used for this purpose, as well as to understand the mechanism of defect formation. The main mechanism of defect formation was proposed to be strain release phenomena. Furthermore, different chalcogen atom positions within the monolayer result in different types of defects, such as the appearance of cracks or wrinkles across monolayers. In addition to investigating sample topography, Kelvin probe force microscopy (KPFM) was used to examine its electrical properties to see if the formation of defects impacts work function. Further study directions have been suggested for identifying and characterizing defects and their formation mechanism in the Janus crystals to understand their fundamental properties.
ContributorsSinha, Shantanu (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2022
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022