Matching Items (154)
171311-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as

Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as well as caregivers to maintain appropriate glucose levels. The majority of T1D patients have antibodies to one or more antigens: insulin, IA-2, GAD65, and ZnT8. Although antibodies are detectable years before symptoms occur, the initiating factors and mechanisms of progression towards β-cell destruction are still not known. The search for new autoantibodies to elucidate the autoimmune process in diabetes has been slow, with proteome level screenings on native proteins only finding a few minor antigens. Post-translational modifications (PTM)—chemical changes that occur to the protein after translation is complete—are an unexplored way a self-protein could become immunogenic. This dissertation presents the first large sale screening of autoantibodies in T1D to nitrated proteins. The Contra Capture Protein Array (CCPA) allowed for fresh expression of hundreds of proteins that were captured on a secondary slide by tag-specific ligand and subsequent modification with peroxynitrite. The IgG and IgM humoral response of 48 newly diagnosed T1D subjects and 48 age-matched controls were screened against 1632 proteins highly or specifically expressed in pancreatic cells. Top targets at 95% specificity were confirmed with the same serum samples using rapid antigenic protein in situ display enzyme-linked immunosorbent assay (RAPID ELISA) a modified sandwich ELISA employing the same cell-free expression as the CCPA. For validation, 8 IgG and 5 IgM targets were evaluated with an independent serum sample set of 94 T1D subjects and 94 controls. The two best candidates at 90% specificity were estrogen receptor 1 (ESR1) and phosphatidylinositol 4-kinase type 2 beta (PI4K2B) which had sensitivities of 22% (p=.014) and 25% (p=.045), respectively. Receiver operating characteristic (ROC) analyses found an area under curve (AUC) of 0.6 for ESR1 and 0.58 for PI4K2B. These studies demonstrate the ability and value for high-throughput autoantibody screening to modified antigens and the frequency of Type 1 diabetes.
ContributorsHesterman, Jennifer (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Sweazea, Karen (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
171611-Thumbnail Image.png
Description
There is a need in the ecology literature to have a discussion about the fundamental theories from which population dynamics arises. Ad hoc model development is not uncommon in the field often as a result of a need to publish rapidly and frequently. Ecologists and statisticians like Robert J. Steidl

There is a need in the ecology literature to have a discussion about the fundamental theories from which population dynamics arises. Ad hoc model development is not uncommon in the field often as a result of a need to publish rapidly and frequently. Ecologists and statisticians like Robert J. Steidl and Kenneth P Burnham have called for a more deliberative approach they call "hard thinking". For example, the phenomena of population growth can be captured by almost any sigmoid function. The question of which sigmoid function best explains a data set cannot be answered meaningfully by statistical regression since that can only speak to the validity of the shape. There is a need to revisit enzyme kinetics and ecological stoichiometry to properly justify basal model selection in ecology. This dissertation derives several common population growth models from a generalized equation. The mechanistic validity of these models in different contexts is explored through a kinetic lens. The behavioral kinetic framework is then put to the test by examining a set of biologically plausible growth models against the 1968-1995 elk population count data for northern Yellowstone. Using only this count data, the novel Monod-Holling growth model was able to accurately predict minimum viable population and life expectancy despite both being exogenous to the model and data set. Lastly, the elk/wolf data from Yellowstone was used to compare the validity of the Rosenzweig-MacArthur and Arditi-Ginzburg models. They both were derived from a more general model which included both predator and prey mediated steps. The Arditi-Ginzburg model was able to fit the training data better, but only the Rosenzweig-MacArthur model matched the validation data. Accounting for animal sexual behavior allowed for the creation of the Monod-Holling model which is just as simple as the logistic differential equation but provides greater insights for conservation purposes. Explicitly acknowledging the ethology of wolf predation helps explain the differences in predictive performances by the best fit Rosenzweig-MacArthur and Arditi-Ginzburg models. The behavioral kinetic framework has proven to be a useful tool, and it has the ability to provide even further insights going forward.
ContributorsPringle, Jack Andrew McCracken (Author) / Anderies, John M (Thesis advisor) / Kuang, Yang (Committee member) / Milner, Fabio (Committee member) / Arizona State University (Publisher)
Created2022
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
171416-Thumbnail Image.png
Description
The mutual inhibition between synthetic gene circuits and cell growth produces growth feedback in the host-circuit system. Previous studies have demonstrated that the growth feedback has an marked impact on the molecular dynamics of the host-circuit system. However, the complexity of the growth feedback effect is not fully understood. A

The mutual inhibition between synthetic gene circuits and cell growth produces growth feedback in the host-circuit system. Previous studies have demonstrated that the growth feedback has an marked impact on the molecular dynamics of the host-circuit system. However, the complexity of the growth feedback effect is not fully understood. A theoretical framework was developed to study the dynamics of the coupling between growth feedback and synthetic gene circuits. The study’s results reveal three major points about the impact of growth feedback. First, a nonlinear emergent behavior mediated by growth feedback. The unexpected behavior depends on the dynamic ribosome allocation between gene circuit expression and host cell growth. Second, the emergence and loss of unexpected qualitative states on the host-circuit system generated by ultrasensitive growth feedback. Third, the growth feedback-induced cooperativity behavior in synthetic gene modules competing for resources. In addition, growth feedback attenuated the winner-takes-all rules on resource competition between the two self-activating modules. These results demonstrate that growth feedback plays an important role in the host-circuit system’s molecular dynamics. Characterizing general principles from the effect of growth facilitates the ability to minimize or even harness unexpected gene expression behaviors derived from the effect of growth feedback.
ContributorsMelendez-Alvarez, Juan Ramon (Author) / Tian, Xiaojun (Thesis advisor) / Wang, Xiao (Committee member) / Kuang, Yang (Committee member) / Arizona State University (Publisher)
Created2022
Description

Plasticizers are plastic additives used to enhance the physical properties of plastic and are ubiquitous in the environment. A class of plasticizer compounds called phthalate esters that are not fully eliminated in wastewater treatment facilities are relevant to the ecological health of downstream ecosystems and urban areas due to their

Plasticizers are plastic additives used to enhance the physical properties of plastic and are ubiquitous in the environment. A class of plasticizer compounds called phthalate esters that are not fully eliminated in wastewater treatment facilities are relevant to the ecological health of downstream ecosystems and urban areas due to their ecotoxicity, tendency for soil accumulation, and the emerging concern about their effects on public health. However, plasticizer concentrations in a constructed wetland environment have rarely been studied in the United States, prompting the need for a method of plasticizer quantification in the Tres Rios Constructed Wetlands which are sustained by the effluent of the 91st Avenue Wastewater Treatment Plant in Phoenix, Arizona. The concentrations of four common plasticizer compounds (dimethyl: DMP, diethyl: DEP, di-n-butyl: DnBP, and bis(2-ethylhexyl): DEHP phthalate) at five sites across the wetland surface water were quantified using solid-phase extraction followed by gas chromatography coupled with mass spectrometry (GC/MS). The sampling period included four sample sets taken from March 2022 to September 2022, which gave temporal data in addition to spatial concentration data. Quantification and quality control were performed using internal standard calibration, replicate samples, and laboratory blanks. Higher molecular weight phthalates accumulated in the wetland surface water at significantly higher average concentrations than those of lower molecular weight at a 95% confidence level, ranging from 8 ng/L to 7349 ng/L and 4 ng/L to 27876 ng/L for DnBP and DEHP, respectively. Concentrations for dimethyl phthalate and diethyl phthalate were typically less than 50 ng/L and were often below the method detection limit. Average concentrations of DnBP and DEHP were significantly higher during periods of high temperatures and arid conditions. The spatial distribution of phthalates was analyzed. Most importantly, a method for successful ultra-trace quantification of plasticizers at Tres Rios was established. These results confirm the presence of plasticizers at Tres Rios and a significant seasonal increase in their surface water concentrations. The developed analytical procedure provides a solid foundation for the Wetlands Environmental Ecology Lab at ASU to further investigate plasticizers and contaminants of emerging concern and determine their ultimate fate through volatilization, sorption, photodegradation, hydrolysis, microbial biodegradation, and phytoremediation studies.

ContributorsStorey, Garrett (Author) / Herckes, Pierre (Thesis director) / Childers, Dan (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

There are limited methods and techniques to quantitatively assess protein content in single cells or small cell populations of tissues. The standard protein insulin was used to understand how potential changes in the preparation or co-crystallization process could improve sensitivity and limit of detection through matrix assisted laser desorption ionization

There are limited methods and techniques to quantitatively assess protein content in single cells or small cell populations of tissues. The standard protein insulin was used to understand how potential changes in the preparation or co-crystallization process could improve sensitivity and limit of detection through matrix assisted laser desorption ionization (MALDI) mass spectrometry analysis in Bruker’s Microflex LRF using polydimethylsiloxane (PDMS) reservoirs. In addition, initial imaging tests were performed on Bruker’s RapifleX MALDI Tissuetyper to determine the instrument’s imaging capabilities on proteins of interest through the use of a single layer “Christmas tree” microfluidic device, with the aim of applying a similar approach to future tissue samples. Data on 2µM insulin determined that a 95% laser power in the Microflex corresponded to 12-15% laser power in the RapifleX. Based on the experiments with insulin, the process of mixing insulin and saturated ɑ-Cyano-4-hydroxycinnamic acid (HCCA) matrix solvent in a 1:1 ratio using 10mM sodium phosphate buffer under area analysis is most optimized with a limit of detection value of 110 nM. With this information, the future aim is to apply this method to a double layer Christmas tree device in order to hopefully quantitatively analyze and image protein content in single or small cell populations.

ContributorsKow, Keegan (Author) / Ros, Alexandra (Thesis director) / Borges, Chad (Committee member) / Cruz-Villarreal, Jorvani (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
168356-Thumbnail Image.png
Description
Antibodies are the immunoglobulins which are secreted by the B cells after a microbial invasion. They are stable and stays in the serum for a long time which makes them an excellent biomarker for disease diagnosis. Inflammatory bowel disease is a type of autoimmune disease where the immune system mistakenly

Antibodies are the immunoglobulins which are secreted by the B cells after a microbial invasion. They are stable and stays in the serum for a long time which makes them an excellent biomarker for disease diagnosis. Inflammatory bowel disease is a type of autoimmune disease where the immune system mistakenly attacks the commensal bacteria and leads to inflammation. We studied antibody response of 100 Crohn’s disease (CD), 100 ulcerative colitis (UC) and 100 healthy controls against 1,173 bacterial and 397 viral proteins. We found some anti-bacterial antibodies higher in CD compared to controls while some antibodies lower in UC compared to controls. We were able to build biomarker panels with AUCs of 0.81, 0.87, and 0.82 distinguishing CD vs. control, UC vs. control, and CD vs. UC, respectively. Subgroup analysis based on the Montreal classification revealed that penetrating CD behavior (B3), colonic CD location (L2), and extensive UC (E3) exhibited highest antibody reactivity among all patients. We also wanted to study the reason for the presence of autoantibodies in the sera of healthy individuals. A meta-analysis of 9 independent biomarker study was performed to find 77 common autoantibodies shared by healthy individuals. There was no gender bias; however, the number of autoantibodies increased with age, plateauing around adolescence. Molecular mimicry likely contributed to the elicitation of a subset of these common autoantibodies as 21 common autoantigens had 7 or more ungapped amino acid matches with viral proteins. Intrinsic properties of protein like hydrophilicity, basicity, aromaticity, and flexibility were enriched for common autoantigens. Subcellular localization and tissue expression analysis indicated the sequestration of some autoantigens from circulating autoantibodies can explain the absence of autoimmunity in these healthy individuals.
ContributorsShome, Mahasish (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021
161970-Thumbnail Image.png
Description
The representation of a patient’s characteristics as the parameters of a model is a key component in many studies of personalized medicine, where the underlying mathematical models are used to describe, explain, and forecast the course of treatment. In this context, clinical observations form the bridge between the mathematical frameworks

The representation of a patient’s characteristics as the parameters of a model is a key component in many studies of personalized medicine, where the underlying mathematical models are used to describe, explain, and forecast the course of treatment. In this context, clinical observations form the bridge between the mathematical frameworks and applications. However, the formulation and theoretical studies of the models and the clinical studies are often not completely compatible, which is one of the main obstacles in the application of mathematical models in practice. The goal of my study is to extend a mathematical framework to model prostate cancer based mainly on the concept of cell-quota within an evolutionary framework and to study the relevant aspects for the model to gain useful insights in practice. Specifically, the first aim is to construct a mathematical model that can explain and predict the observed clinical data under various treatment combinations. The second aim is to find a fundamental model structure that can capture the dynamics of cancer progression within a realistic set of data. Finally, relevant clinical aspects such as how the patient's parameters change over the course of treatment and how to incorporate treatment optimization within a framework of uncertainty quantification, will be examined to construct a useful framework in practice.
ContributorsPhan, Tin (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric J (Committee member) / Crook, Sharon (Committee member) / Maley, Carlo (Committee member) / Bryce, Alan (Committee member) / Arizona State University (Publisher)
Created2021
161972-Thumbnail Image.png
Description
Synthetic biology (SB) has become an important field of science focusing on designing and engineering new biological parts and systems, or re-designing existing biological systems for useful purposes. The dramatic growth of SB throughout the past two decades has not only provided us numerous achievements, but also brought us more

Synthetic biology (SB) has become an important field of science focusing on designing and engineering new biological parts and systems, or re-designing existing biological systems for useful purposes. The dramatic growth of SB throughout the past two decades has not only provided us numerous achievements, but also brought us more timely and underexplored problems. In SB's entire history, mathematical modeling has always been an indispensable approach to predict the experimental outcomes, improve experimental design and obtain mechanism-understanding of the biological systems. \textit{Escherichia coli} (\textit{E. coli}) is one of the most important experimental platforms, its growth dynamics is the major research objective in this dissertation. Chapter 2 employs a reaction-diffusion model to predict the \textit{E. coli} colony growth on a semi-solid agar plate under multiple controls. In that chapter, a density-dependent diffusion model with non-monotonic growth to capture the colony's non-linear growth profile is introduced. Findings of the new model to experimental data are compared and contrasted with those from other proposed models. In addition, the cross-sectional profile of the colony are computed and compared with experimental data. \textit{E. coli} colony is also used to perform spatial patterns driven by designed gene circuits. In Chapter 3, a gene circuit (MINPAC) and its corresponding pattern formation results are presented. Specifically, a series of partial differential equation (PDE) models are developed to describe the pattern formation driven by the MINPAC circuit. Model simulations of the patterns based on different experimental conditions and numerical analysis of the models to obtain a deeper understanding of the mechanisms are performed and discussed. Mathematical analysis of the simplified models, including traveling wave analysis and local stability analysis, is also presented and used to explore the control strategies of the pattern formation. The interaction between the gene circuit and the host \textit{E. coli} may be crucial and even greatly affect the experimental outcomes. Chapter 4 focuses on the growth feedback between the circuit and the host cell under different nutrient conditions. Two ordinary differential equation (ODE) models are developed to describe such feedback with nutrient variation. Preliminary results on data fitting using both two models and the model dynamical analysis are included.
ContributorsHe, Changhan (Author) / Kuang, Yang (Thesis advisor) / Wang, Xiao (Committee member) / Kostelich, Eric (Committee member) / Tian, Xiaojun (Committee member) / Gumel, Abba (Committee member) / Arizona State University (Publisher)
Created2021
168737-Thumbnail Image.png
Description
Transient protein-protein and protein-molecule interactions fluctuate between associated and dissociated states. They are widespread in nature and mediate most biological processes. These interactions are complex and are strongly influenced by factors such as concentration, structure, and environment. Understanding and utilizing these types of interactions is useful from both a fundamental

Transient protein-protein and protein-molecule interactions fluctuate between associated and dissociated states. They are widespread in nature and mediate most biological processes. These interactions are complex and are strongly influenced by factors such as concentration, structure, and environment. Understanding and utilizing these types of interactions is useful from both a fundamental and design perspective. In this dissertation, transient protein interactions are used as the sensing element of a biosensor for small molecule detection. This is done by using a transcription factor-small molecule pair that mediates the activation of a CRISPR/Cas12a complex. Activation of the Cas12a enzyme results in an amplified readout mechanism that is either fluorescence or paper based. This biosensor can successfully detect 9 different small molecules including antibiotics with a tuneable detection limit ranging from low µM to low nM. By combining protein and nucleic acid-based systems, this biosensor has the potential to report on almost any protein-molecule interaction, linking this to the intrinsic amplification that is possible when working with nucleic acid-based technologies. The second part of this dissertation focuses on understanding protein-molecule interactions at a more fundamental level, and, in so doing, exploring design rules required to generalize sensors like the ones described above. This is done by training a neural network algorithm with binding data from high density peptide micro arrays incubated with specific protein targets. Because the peptide sequences were chosen simply to evenly, though sparsely, represent all sequence space, the resulting network provides a comprehensive sequence/binding relationship for a given target protein. While past work had shown that this works well on the arrays, here I have explored how well the neural networks thus trained, predict sequence-dependent binding in the context of protein-protein and peptide-protein interactions. Amino acid sequences, either free in solution or embedded in protein structure, will display somewhat different binding properties than sequences affixed to the surface of a high-density array. However, the neural network trained on array sequences was able to both identify binding regions in between proteins and predict surface plasmon resonance-based binding propensities for peptides with statistically significant levels of accuracy.
ContributorsSwingle, Kirstie Lynn (Author) / Woodbury, Neal W (Thesis advisor) / Green, Alexander A (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2022