Matching Items (171)
134770-Thumbnail Image.png
Description
Disturbances in the protein interactome often play a large role in cancer progression. Investigation of protein-protein interactions (PPI) can increase our understanding of cancer pathways and will disclose unknown targets involved in cancer disease biology. Although numerous methods are available to study protein interactions, most platforms suffer from drawbacks including

Disturbances in the protein interactome often play a large role in cancer progression. Investigation of protein-protein interactions (PPI) can increase our understanding of cancer pathways and will disclose unknown targets involved in cancer disease biology. Although numerous methods are available to study protein interactions, most platforms suffer from drawbacks including high false positive rates, low throughput, and lack of quantification. Moreover, most methods are not compatible for use in a clinical setting. To address these limitations, we have developed a multiplexed, in-solution protein microarray (MISPA) platform with broad applications in proteomics. MISPA can be used to quantitatively profile PPIs and as a robust technology for early detection of cancers. This method utilizes unique DNA barcoding of individual proteins coupled with next generation sequencing to quantitatively assess interactions via barcode enrichment. We have tested the feasibility of this technology in the detection of patient immune responses to oropharyngeal carcinomas and in the discovery of novel PPIs in the B-cell receptor (BCR) pathway. To achieve this goal, 96 human papillomavirus (HPV) antigen genes were cloned into pJFT7-cHalo (99% success) and pJFT7-n3xFlag-Halo (100% success) expression vectors. These libraries were expressed via a cell-free in vitro transcription-translation system with 93% and 96% success, respectively. A small-scale study of patient serum interactions with barcoded HPV16 antigens was performed and a HPV proteome-wide study will follow using additional patient samples. In addition, 15 query proteins were cloned into pJFT7_nGST expression vectors, expressed, and purified with 93% success to probe a library of 100 BCR pathway proteins and detect novel PPIs.
ContributorsRinaldi, Capria Lakshmi (Author) / LaBaer, Joshua (Thesis director) / Mangone, Marco (Committee member) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
160731-Thumbnail Image.png
Description

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods and at varying times across days and/or months over the course of one year (July 15, 2020–July 14, 2021), allowing the team to study the impacts of the surface treatment under various weather conditions.

Created2021-09
168413-Thumbnail Image.png
Description
Microfluidic platforms have been exploited extensively as a tool for the separation of particles by electric field manipulation. Microfluidic devices can facilitate the manipulation of particles by dielectrophoresis. Separation of particles by size and type has been demonstrated by insulator-based dielectrophoresis in a microfluidic device. Thus, manipulating particles by size

Microfluidic platforms have been exploited extensively as a tool for the separation of particles by electric field manipulation. Microfluidic devices can facilitate the manipulation of particles by dielectrophoresis. Separation of particles by size and type has been demonstrated by insulator-based dielectrophoresis in a microfluidic device. Thus, manipulating particles by size has been widely studied throughout the years. It has been shown that size-heterogeneity in organelles has been linked to multiple diseases from abnormal organelle size. Here, a mixture of two sizes of polystyrene beads (0.28 and 0.87 μm) was separated by a ratchet migration mechanism under a continuous flow (20 nL/min). Furthermore, to achieve high-throughput separation, different ratchet devices were designed to achieve high-volume separation. Recently, enormous efforts have been made to manipulate small size DNA and proteins. Here, a microfluidic device comprising of multiple valves acting as insulating constrictions when a potential is applied is presented. The tunability of the electric field gradient is evaluated by a COMSOL model, indicating that high electric field gradients can be reached by deflecting the valve at a certain distance. Experimentally, the tunability of the dynamic constriction was demonstrated by conducting a pressure study to estimate the gap distance between the valve and the substrate at different applied pressures. Finally, as a proof of principle, 0.87 μm polystyrene beads were manipulated by dielectrophoresis. These microfluidic platforms will aid in the understanding of size-heterogeneity of organelles for biomolecular assessment and achieve separation of nanometer-size DNA and proteins by dielectrophoresis.
ContributorsOrtiz, Ricardo (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2021
Description

In cold chain tracking systems, accuracy and flexibility across different temperatures ranges plays an integral role in monitoring biospecimen integrity. However, while two common cold chain tracking systems are currently available (electronic and physics/chemical), there is not an affordable cold chain tracking mechanism that can be applied to a variety

In cold chain tracking systems, accuracy and flexibility across different temperatures ranges plays an integral role in monitoring biospecimen integrity. However, while two common cold chain tracking systems are currently available (electronic and physics/chemical), there is not an affordable cold chain tracking mechanism that can be applied to a variety of temperatures while maintaining accuracy for individual vials. Hence, our lab implemented our understanding of biochemical reaction kinetics to develop a new cold chain tracking mechanism using the permanganate/oxalic acid reaction. The permanganate/oxalic acid reaction is characterized by the reduction of permanganate (MnVII) to Mn(II) with Mn(II)-autocatalyzed oxidation of oxalate to CO2, resulting in a pink to colorless visual indicator change when the reaction system is not in the solid state (i.e., frozen or vitrified). Throughout our research, we demonstrate, (i) Improved reaction consistency and accuracy along with extended run times with the implementation of a nitric acid-based labware washing protocol, (ii) Simulated reaction kinetics for the maximum length reaction and 60-minute reaction based on previously developed MATLAB scripts (iii) Experimental reaction kinetics to verify the simulated MATLAB maximum and 60-minute reactions times (iv) Long-term stability of the permanganate/oxalic acid reaction with water or eutectic solutions of sodium perchlorate and magnesium perchlorate at -80°C (v) Reaction kinetics with eutectic solvents, sodium perchlorate and magnesium perchlorate, at 25°C, 4°C, and -8°C (vi) Accelerated reaction kinetics after the addition of varying concentrations of manganese perchlorate (vii) Reaction kinetics of higher concentration reaction systems (5x and 10x; for darker colors), at 25°C (viii) Long-term stability of the 10x higher concentration reaction at -80°C.

ContributorsLjungberg, Emil (Author) / Borges, Chad (Thesis director) / Levitus, Marcia (Committee member) / Williams, Peter (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2022-12
171514-Thumbnail Image.png
Description
Plasma and serum are the most commonly used liquid biospecimens in biomarker research. These samples may be subjected to several pre-analytical variables (PAVs) during collection, processing and storage. Exposure to thawed conditions (temperatures above -30 °C) is a PAV that is hard to control, and track and could provide misleading

Plasma and serum are the most commonly used liquid biospecimens in biomarker research. These samples may be subjected to several pre-analytical variables (PAVs) during collection, processing and storage. Exposure to thawed conditions (temperatures above -30 °C) is a PAV that is hard to control, and track and could provide misleading information, that fail to accurately reveal the in vivo biological reality, when unaccounted for. Hence, assays that can empirically check the integrity of plasma and serum samples are crucial. As a solution to this issue, an assay titled ΔS-Cys-Albumin was developed and validated. The reference range of ΔS-Cys-Albumin in cardio vascular patients was determined and the change in ΔS-Cys-Albumin values in different samples over time course incubations at room temperature, 4 °C and -20 °C were evaluated. In blind challenges, this assay proved to be successful in identifying improperly stored samples individually and as groups. Then, the correlation between the instability of several clinically important proteins in plasma from healthy and cancer patients at room temperature, 4 °C and -20 °C was assessed. Results showed a linear inverse relationship between the percentage of proteins destabilized and ΔS-Cys-Albumin regardless of the specific time or temperature of exposure, proving ΔS-Cys-Albumin as an effective surrogate marker to track the stability of clinically relevant analytes in plasma. The stability of oxidized LDL in serum at different temperatures was assessed in serum samples and it stayed stable at all temperatures evaluated. The ΔS-Cys-Albumin requires the use of an LC-ESI-MS instrument which limits its availability to most clinical research laboratories. To overcome this hurdle, an absorbance-based assay that can be measured using a plate reader was developed as an alternative to the ΔS-Cys-Albumin assay. Assay development and analytical validation procedures are reported herein. After that, the range of absorbance in plasma and serum from control and cancer patients were determined and the change in absorbance over a time course incubation at room temperature, 4 °C and -20 °C was assessed. The results showed that the absorbance assay would act as a good alternative to the ΔS-Cys-Albumin assay.
ContributorsJehanathan, Nilojan (Author) / Borges, Chad (Thesis advisor) / Guo, Jia (Committee member) / Van Horn, Wade (Committee member) / Arizona State University (Publisher)
Created2022
171906-Thumbnail Image.png
Description
Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges.

Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges. Vulnerability assessment (VA) examines the potential consequences a system is likely to experience due to exposure to perturbation or stressors and lack of the capacity to adapt. Post-fire debris flow and heat represent particularly challenging problems for infrastructure and users in the arid U.S. West. Post-fire debris flow, which is manifested with heat and drought, produces powerful runoff threatening physical transportation infrastructures. And heat waves have devastating health effects on transportation infrastructure users, including increased mortality rates. VA anticipates the potential consequences of these perturbations and enables infrastructure stakeholders to improve the system's resilience. The current transportation climate VA—which only considers a single direct climate stressor on the infrastructure—falls short of addressing the wildfire and heat challenges. This work proposes advanced transportation climate VA methods to address the complex and multiple climate stressors and the vulnerability of infrastructure users. Two specific regions were chosen to carry out the progressive transportation climate VA: 1) the California transportation networks’ vulnerability to post-fire debris flows, and 2) the transportation infrastructure user’s vulnerability to heat exposure in Phoenix.
ContributorsLi, Rui (Author) / Chester, Mikhail V. (Thesis advisor) / Middel, Ariane (Committee member) / Hondula, David M. (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2022
190964-Thumbnail Image.png
Description
Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation

Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation addresses the questions of how vector and host demography impact WNV dynamics, and how expected and likely climate change scenarios will affect demographic and epidemiological processes of WNV transmission. First, a data fusion method is developed that connects non-autonomous logistic model parameters to mosquito time series data. This method captures the inter-annual and intra-seasonal variation of mosquito populations within a geographical location. Next, a three-population WNV model between mosquito vectors, bird hosts, and human hosts with infection-age structure for the vector and bird host populations is introduced. A sensitivity analysis uncovers which parameters have the most influence on WNV outbreaks. Finally, the WNV model is extended to include the non-autonomous population model and temperature-dependent processes. Model parameterization using historical temperature and human WNV case data from the Greater Toronto Area (GTA) is conducted. Parameter fitting results are then used to analyze possible future WNV dynamics under two climate change scenarios. These results suggest that WNV risk for the GTA will substantially increase as temperature increases from climate change, even under the most conservative assumptions. This demonstrates the importance of ensuring that the warming of the planet is limited as much as possible.
ContributorsMancuso, Marina (Author) / Milner, Fabio A (Thesis advisor) / Kuang, Yang (Committee member) / Kostelich, Eric (Committee member) / Eikenberry, Steffen (Committee member) / Manore, Carrie (Committee member) / Arizona State University (Publisher)
Created2023
189326-Thumbnail Image.png
Description
Over the past 20 years, the fields of synthetic biology and synthetic biosystems engineering have grown into mature disciplines, leading to significant breakthroughs in cancer research, diagnostics, cell-based medicines, biochemical production, etc. Application of mathematical modelling to biological and biochemical systems have not only given great insight into how these

Over the past 20 years, the fields of synthetic biology and synthetic biosystems engineering have grown into mature disciplines, leading to significant breakthroughs in cancer research, diagnostics, cell-based medicines, biochemical production, etc. Application of mathematical modelling to biological and biochemical systems have not only given great insight into how these systems function, but also have lent enough predictive power to aid in the forward-engineering of synthetic constructs. However, progress has been impeded by several modes of context-dependence unique to biological and biochemical systems that are not seen in traditional engineering disciplines, resulting in the need for lengthy design-build-test cycles before functional prototypes are generated.In this work, two of these universal modes of context dependence – resource competition and growth feedback –their effects on synthetic gene circuits and potential control mechanisms, are studied and characterized. Results demonstrate that a novel competitive control architecture can be utilized to mitigate the effects of winner-take-all resource competition (a form of context dependence where distinct gene modules influence each other by competing over a shared pool of transcriptional/translational resources) in synthetic gene circuits and restore circuits to their intended function. Application of the fluctuation-dissipation theorem and rigorous stochastic simulations demonstrate that realistic resource constraints present in cells at the transcriptional and translational levels influence noise in gene circuits in a nonmonotonic fashion, either increasing or decreasing noise depending on the transcriptional/translational capacity. Growth feedback on the other hand links circuit function to cellular growth rate via increased protein dilution rate during exponential growth phase. This in turn can result in the collapse of bistable gene circuits as the accelerated dilution rate forces switches in a high stable state to fall to a low stable state. Mathematical modelling and experimental data demonstrate that application of repressive links can insulate sensitive parts of gene circuits against growth-fluctuations and can in turn increase the robustness of multistable circuits in growth contexts. The results presented in this work aid in the accumulation of understanding of biological and biochemical context dependence, and corresponding control strategies and design principles engineers can utilize to mitigate these effects.
ContributorsStone, Austin (Author) / Tian, Xiao-jun (Thesis advisor) / Wang, Xiao (Committee member) / Smith, Barbara (Committee member) / Kuang, Yang (Committee member) / Cheng, Albert (Committee member) / Arizona State University (Publisher)
Created2023
187871-Thumbnail Image.png
Description
Trace evidence is an essential component of forensic investigations. Anthropogenicmaterials such as fibers and glass have been well studied for use in forensic trace evidence, but the potential use of retroreflective beads found in soils for forensic investigations is largely unexplored. Retroreflective glass beads are tiny spheres mixed into pavement

Trace evidence is an essential component of forensic investigations. Anthropogenicmaterials such as fibers and glass have been well studied for use in forensic trace evidence, but the potential use of retroreflective beads found in soils for forensic investigations is largely unexplored. Retroreflective glass beads are tiny spheres mixed into pavement markings to create reflective surfaces to reduce lane departure accidents. Retroreflective glass beads are a potentially new source of trace evidence for forensic investigations. Analysis of the spatial distribution and chemical compositions of retroreflective glass beads recovered from 17 soil samples were analyzed and compared to see if there are striking variations that can distinguish samples by source. Soil samples taken near marked roads showed significantly higher concentrations of glass beads, averaging from 0.18 bead/g of soil sample to 587 beads/g of soil, while soil samples taken near unmarked roads had average range of concentration of 0 bead/g of soil to 0.21 bead/g of soil. Retroreflective glass beads come from pavement markings, thus soil samples near marked roads are expected to have higher concentrations of glass beads. Analysis of spatial distribution of glass beads showed that as sample collection moved further from the road, concentration of glass beads decreased. ICP-MS results of elemental concentrations for each sample showed discriminative differences between samples, for most of the elements. An analysis of variance for elemental concentrations was conducted, and results showed statistically significant differences, beyond random chance alone for half of the elements analyzed. For forensic comparisons, a significant difference in even just one element is enough to conclude that the samples came from different sources. The elemental concentrations of glass beads collected from the same location, but of varying differences, was also analyzed. ANOVA results show significant differences for only one or two elements. A pair-wise t-test was conducted to determine which elements are most discriminative among all the samples. Rubidium was found to be the most discriminative, showing significant difference for 67% of the pairs. Beryllium, potassium, and manganese were also highly discriminative, showing significant difference for at least 50% of all the pairs.
ContributorsGomez, Janelle Kate Pacifico (Author) / Montero, Shirly (Thesis advisor) / Herckes, Pierre (Thesis advisor) / Borges, Chad (Committee member) / Gordon, Gwyneth (Committee member) / Arizona State University (Publisher)
Created2023
171311-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as

Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as well as caregivers to maintain appropriate glucose levels. The majority of T1D patients have antibodies to one or more antigens: insulin, IA-2, GAD65, and ZnT8. Although antibodies are detectable years before symptoms occur, the initiating factors and mechanisms of progression towards β-cell destruction are still not known. The search for new autoantibodies to elucidate the autoimmune process in diabetes has been slow, with proteome level screenings on native proteins only finding a few minor antigens. Post-translational modifications (PTM)—chemical changes that occur to the protein after translation is complete—are an unexplored way a self-protein could become immunogenic. This dissertation presents the first large sale screening of autoantibodies in T1D to nitrated proteins. The Contra Capture Protein Array (CCPA) allowed for fresh expression of hundreds of proteins that were captured on a secondary slide by tag-specific ligand and subsequent modification with peroxynitrite. The IgG and IgM humoral response of 48 newly diagnosed T1D subjects and 48 age-matched controls were screened against 1632 proteins highly or specifically expressed in pancreatic cells. Top targets at 95% specificity were confirmed with the same serum samples using rapid antigenic protein in situ display enzyme-linked immunosorbent assay (RAPID ELISA) a modified sandwich ELISA employing the same cell-free expression as the CCPA. For validation, 8 IgG and 5 IgM targets were evaluated with an independent serum sample set of 94 T1D subjects and 94 controls. The two best candidates at 90% specificity were estrogen receptor 1 (ESR1) and phosphatidylinositol 4-kinase type 2 beta (PI4K2B) which had sensitivities of 22% (p=.014) and 25% (p=.045), respectively. Receiver operating characteristic (ROC) analyses found an area under curve (AUC) of 0.6 for ESR1 and 0.58 for PI4K2B. These studies demonstrate the ability and value for high-throughput autoantibody screening to modified antigens and the frequency of Type 1 diabetes.
ContributorsHesterman, Jennifer (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Sweazea, Karen (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022