Matching Items (171)
136377-Thumbnail Image.png
Description
In this thesis, glycan nodes, the basic subunits of complex biological sugars, were studied to determine the reproducibility of gas chromatography-mass spectrometry (GC/MS) based methylation analysis of whole blood plasma by normalization using an internal standard of heavy permethylated glycans. Glycans are complex biological sugars that have a variety of

In this thesis, glycan nodes, the basic subunits of complex biological sugars, were studied to determine the reproducibility of gas chromatography-mass spectrometry (GC/MS) based methylation analysis of whole blood plasma by normalization using an internal standard of heavy permethylated glycans. Glycans are complex biological sugars that have a variety of applications in the human body and will display aberrant compositions when produced by cancerous cells. Thus an assay to determine their composition can be used as a diagnostic tool. It was shown that the assay may have potential use, but needs further refinement to become an improvement over current methods by analyzing the results of ratio-determination and replicate experiments.
ContributorsMiyasaki, Tyler Takeo (Author) / Borges, Chad (Thesis director) / Van Horn, Wade (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136226-Thumbnail Image.png
Description
Western diets, high in dietary fat and red meat, are associated with hyperglycemia and weight gain, symptoms that promote insulin resistance and diabetes. Previous studies have shown that elevated glucose promotes glycation of circulating proteins such as albumin, which is thought to lead to hyperglycemia complications. It was hypothesized that

Western diets, high in dietary fat and red meat, are associated with hyperglycemia and weight gain, symptoms that promote insulin resistance and diabetes. Previous studies have shown that elevated glucose promotes glycation of circulating proteins such as albumin, which is thought to lead to hyperglycemia complications. It was hypothesized that diets with no meat consumption (pesco-vegetarian and lacto-vegetarian) would reduce protein glycation, in comparison to a diet with meat. Forty six healthy adult omnivorous subjects were randomized into one of three groups and instructed to either consume red meat (i.e. meat) or poultry twice per day (control), eliminate meat and increase fish consumption (pesco-vegetarian), or adopt a vegetarian diet devoid of fish, meat or poultry (lacto-vegetarian) for four weeks. Fasting plasma samples were collected from participants at baseline and after 4 weeks of the dietary intervention. Plasma glucose concentrations were measured using a commercially available kit. Percent glycated albumin was measured on a separate aliquot of plasma by mass spectrometry. Plasma glucose concentrations were significantly increased following 4-weeks of pesco-vegetarian diet (P=0.002, paired t-test). Neither the lacto-vegetarian (P=0.898) or the control diet (P=0.233) affected plasma glucose concentrations. Despite the significant increase in plasma glucose following a pesco-vegetarian diet, no change in percent glycated albumin was observed (P>0.50, ANOVA). These findings may indicate a protective effect of the pesco-vegetarian diet on protein glycation in the presence of elevated plasma glucose and suggest the need for additional studies to examine the link between increased fish consumption and glucose regulation.
ContributorsRaad, Noor (Author) / Sweazea, Karen (Thesis director, Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
141434-Thumbnail Image.png
Description

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season.

Methods: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature–health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different “trigger points” at which heat-health intervention measures might be activated.

Results: We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures, and there were several times more of those events than there were deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22°C) across multiple health events and diagnoses.

Conclusion: Consideration of multiple health events and diagnoses together with a comprehensive approach to identifying threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve the public health response to a problem that is projected to worsen in the coming decades.

ContributorsPettiti, Diana B. (Author) / Hondula, David M. (Author) / Yang, Shuo (Author) / Harlan, Sharon L. (Author) / Chowell, Gerardo (Author)
Created2016-02-01
141438-Thumbnail Image.png
Description

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables.

Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983–2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (− 95%) to an increase of 339 deaths per year (+ 359%).

Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making.

ContributorsHondula, David M. (Author) / Georgescu, Matei (Author) / Balling, Jr., Robert C. (Author)
Created2014-04-28
141447-Thumbnail Image.png
Description

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53 cooling centers were evaluated to assess facility and visitor characteristics. Maricopa County staff collected data by directly observing daily operations and by surveying managers and visitors. The cooling centers in Maricopa County were often housed within community, senior, or religious centers, which offered various services for at least 1500 individuals daily. Many visitors were unemployed and/or homeless. Many learned about a cooling center by word of mouth or by having seen the cooling center’s location. The cooling centers provide a valuable service and reach some of the region’s most vulnerable populations. This project is among the first to systematically evaluate cooling centers from a public health perspective and provides helpful insight to community leaders who are implementing or improving their own network of cooling centers.

ContributorsBerisha, Vjollca (Author) / Hondula, David M. (Author) / Roach, Matthew (Author) / White, Jessica R. (Author) / McKinney, Benita (Author) / Bentz, Darcie (Author) / Mohamed, Ahmed (Author) / Uebelherr, Joshua (Author) / Goodin, Kate (Author)
Created2016-09-23
141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
148396-Thumbnail Image.png
Description

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT,

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.

ContributorsBennett, Justin Klark (Author) / Kuang, Yang (Thesis director) / Kostelich, Eric (Committee member) / Phan, Tin (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135861-Thumbnail Image.png
Description
Dielectrophoresis is a separations strategy that has the potential to separate small amounts of different proteins from each other. The forces at play in the channel used for dielectrophoresis are electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP). EOF is the force exerted on liquid from an applied potential (1).

Dielectrophoresis is a separations strategy that has the potential to separate small amounts of different proteins from each other. The forces at play in the channel used for dielectrophoresis are electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP). EOF is the force exerted on liquid from an applied potential (1). EP is the force exerted on charged particles in a uniform electric field (2). DEP is the force exerted on particles (charged and uncharged) in a non-uniform electric field (3). This experiment was focused on the testing of a new microfluidic device to see if it could improve the focusing of proteins in dielectrophoresis. It was predicted that the addition of a salt bridge would improve focusing by preventing the ions created by the electrolysis of water around the electrodes from interacting with the proteins and causing aggregation, among other problems. Control trials using the old device showed that electrolysis was likely occurring and was the causal agent for poor outcomes. After applying the electric potential for some time a pH front traveled through the channel causing aggregation of proteins and the current in the channel decreased rapidly, even while the voltage was held constant. The resistance in the channels of the control trials also slightly decreased over time, until the pH shift occurred, at which time it increased rapidly. Experimental trials with a new device that included salt bridges eliminated this pH front and had a roughly linear increase of current in the channel with the voltage applied. This device can now be used in future research with protein dielectrophoresis, including in the potential differentiation of different proteins. References: 1) Electroosmosis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006. 2) Electrophoresis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006. 3) Dielectrophoresis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006.
ContributorsHayes, Katelyn Donna (Author) / Hayes, Mark (Thesis director) / Borges, Chad (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
130319-Thumbnail Image.png
Description

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.

ContributorsOberthuer, Dominik (Author) / Knoska, Juraj (Author) / Wiedorn, Max O. (Author) / Beyerlein, Kenneth R. (Author) / Bushnell, David A. (Author) / Kovaleva, Elena G. (Author) / Heymann, Michael (Author) / Gumprecht, Lars (Author) / Kirian, Richard (Author) / Barty, Anton (Author) / Mariani, Valerio (Author) / Tolstikova, Aleksandra (Author) / Adriano, Luigi (Author) / Awel, Salah (Author) / Barthelmess, Miriam (Author) / Dorner, Katerina (Author) / Xavier, P. Lourdu (Author) / Yefanov, Oleksandr (Author) / James, Daniel (Author) / Nelson, Garrett (Author) / Wang, Dingjie (Author) / Calvey, George (Author) / Chen, Yujie (Author) / Schmidt, Andrea (Author) / Szczepek, Michael (Author) / Frielingsdorf, Stefan (Author) / Lenz, Oliver (Author) / Snell, Edward (Author) / Robinson, Philip J. (Author) / Sarler, Bozidar (Author) / Belsak, Grega (Author) / Macek, Marjan (Author) / Wilde, Fabian (Author) / Aquila, Andrew (Author) / Boutet, Sebastien (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Scheerer, Patrick (Author) / Lipscomb, John D. (Author) / Weierstall, Uwe (Author) / Kornberg, Roger D. (Author) / Spence, John (Author) / Pollack, Lois (Author) / Chapman, Henry N. (Author) / Bajt, Sasa (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2017-03-16
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11