Matching Items (283)
136177-Thumbnail Image.png
Description
The purpose of this study was to determine the ratio of vegetable to fruit incorporated during a fresh vegetable and/or fruit juice diet. Juicing is the process of extracting the liquid part of a plant, fruit, or vegetable. Food can be ground, pressed, and spun to separate the liquid from

The purpose of this study was to determine the ratio of vegetable to fruit incorporated during a fresh vegetable and/or fruit juice diet. Juicing is the process of extracting the liquid part of a plant, fruit, or vegetable. Food can be ground, pressed, and spun to separate the liquid from the pulp. A juice diet involves juicing and consuming a variety of vegetables and fruits. The primary objective of this study was to gather information about the ratio of vegetable to fruit incorporated in freshly made juices during a juice diet. Therefore, the study survey inquired about various topics related to ingredient ratio during a juice diet. The survey data allowed for examination of the relationships between ingredient ratio and certain variables (e.g. gender, age, length of time juicing, juice fast participation, health effects, etc.). The study participants were recruited using online social media. Facebook was the primary method for reaching the online juicing community. A written invitation was distributed in several health related Facebook groups encouraging any person with experience juicing to complete an anonymous survey. This post was also shared via Twitter and various health related websites. The study survey data was used to examine the relationships between ingredient ratio and specific variables. The survey data showed participants had varying levels of experience with juicing. The responses indicated many participants were familiar with juice fasting and many participants completed more than one juice fast. Based on the survey response data, the most common ratio of vegetable to fruit incorporated by the participants during a juice diet was 80% vegetable to 20% fruit. The majority of participants indicated daily consumption of freshly made juice containing 70% -100% vegetables. Based on the survey response data, beginner juicers may be less inclined to incorporate organic produce into their juice diet compared to advanced juicers. The majority of participants reported positive health benefits during a juice diet. Some of the positive health benefits indicated by participants include weight loss, increased energy, and a positive impact on disease symptoms. Some of the negative side effects experienced by participants during a juice diet include frequent urination, headache, and cravings. Cross tabulation calculations between the ratio of ingredients and several variables covered by the study survey demonstrated statistical significance (i.e. length of time juicing, frequency of drinking juice, juice fast participation, number of juice fasts completed, servings of vegetables/fruit in a juice, percent of organic vegetables/fruit used in a juice, perceived positive side effects, and perceived negative side effects). This study provided insight about the average ratio of vegetable to fruit incorporated by participants during a juice diet. When analyzing the data it is important to consider the survey data was self-reported. Therefore, every result and conclusion is based on the individual perceptions of the study participants. In future experimentation, the use of medical tests and blood work would be useful to determine the biological and biochemical effects of drinking raw vegetable and/or fruit juice on the human body.
ContributorsMata, Sara Ann (Author) / Mayol-Kreiser, Sandra (Thesis director) / Shepard, Christina (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
141423-Thumbnail Image.png
Description

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure information in research and risk assessment. The second objective was to provide guidance regarding the operationalization of personal heat exposure research methods.

Discussion:
We define personal heat exposure as realized contact between a person and an indoor or outdoor environment that poses a risk of increases in body core temperature and/or perceived discomfort. Personal heat exposure can be measured directly with wearable monitors or estimated indirectly through the combination of time–activity and meteorological data sets. Complementary information to understand individual-scale drivers of behavior, susceptibility, and health and comfort outcomes can be collected from additional monitors, surveys, interviews, ethnographic approaches, and additional social and health data sets. Personal exposure research can help reveal the extent of exposure misclassification that occurs when individual exposure to heat is estimated using ambient temperature measured at fixed sites and can provide insights for epidemiological risk assessment concerning extreme heat.

Conclusions:
Personal heat exposure research provides more valid and precise insights into how often people encounter heat conditions and when, where, to whom, and why these encounters occur. Published literature on personal heat exposure is limited to date, but existing studies point to opportunities to inform public health practice regarding extreme heat, particularly where fine-scale precision is needed to reduce health consequences of heat exposure.

ContributorsKuras, Evan R. (Author) / Richardson, Molly B. (Author) / Calkins, Mirian M. (Author) / Ebi, Kristie L. (Author) / Gohlke, Julia M. (Author) / Hess, Jeremy J. (Author) / Hondula, David M. (Author) / Kintziger, Kristina W. (Author) / Jagger, Meredith A. (Author) / Middel, Ariane (Author) / Scott, Anna A. (Author) / Spector, June T. (Contributor) / Uejio, Christopher K. (Author) / Vanos, Jennifer K. (Author) / Zaitchik, Benjamin F. (Author)
Created2017-08
140960-Thumbnail Image.png
Description
In June 2016, the Arizona Department of Health Services (ADHS) with researchers from Arizona State University (ASU) convened a one-day workshop of public health professionals and experts from Arizona’s county and state agencies to advance statewide preparedness for extreme weather events and climate change. The United States Centers for Disease

In June 2016, the Arizona Department of Health Services (ADHS) with researchers from Arizona State University (ASU) convened a one-day workshop of public health professionals and experts from Arizona’s county and state agencies to advance statewide preparedness for extreme weather events and climate change. The United States Centers for Disease Control and Prevention (CDC) sponsors the Climate-Ready Cities and States Initiative, which aims to help communities across the country prepare for and prevent projected disease burden associated with climate change. Arizona is one of 18 public health jurisdictions funded under this initiative. ADHS is deploying the CDC’s five-step Building Resilience Against Climate Effects (BRACE) framework to assist counties and local public health partners with becoming better prepared to face challenges associated with the impacts of climate-sensitive hazards. Workshop participants engaged in facilitated exercises designed to rigorously consider social vulnerability to hazards in Arizona and to prioritize intervention activities for extreme heat, wildfire, air pollution, and flooding.

This report summarizes the proceedings of the workshop focusing primarily on two sessions: the first related to social vulnerability mapping and the second related to the identification and prioritization of interventions necessary to address the impacts of climate-sensitive hazards.
ContributorsRoach, Matthew (Author) / Hondula, David M. (Author) / Putnam, Hana (Author) / Chhetri, Nalini (Author) / Chakalian, Paul (Author) / Watkins, Lance (Author) / Dufour, Brigette (Author)
Created2016-11-28