Matching Items (103)
Description
Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma

Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma growth. The study aims to explore key factors influencing tumor morphology and to contribute to enhancing prediction techniques for treatment.
ContributorsShayegan, Tara (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05
187739-Thumbnail Image.png
Description
Concerns, such as global warming, greenhouse gas emissions, and changes in hydrological regimes, have been raised in response to the global ecosystem changes caused by humans. Understanding the ecosystem functions is crucial for assisting stakeholders in formulating viable plans to address the issues for a healthier planet. However, a systematic

Concerns, such as global warming, greenhouse gas emissions, and changes in hydrological regimes, have been raised in response to the global ecosystem changes caused by humans. Understanding the ecosystem functions is crucial for assisting stakeholders in formulating viable plans to address the issues for a healthier planet. However, a systematic evaluation of recent environmental changes and current ecosystem status, focusing on terrestrial ecosystem carbon-water trade-off, in the Lower Mekong Basin (LMB) is lacking. This dissertation involves: (1) examining the long-term spatiotemporal patterns of ecosystem conditions in response to gains and losses of the forest; (2) evaluating the current consumptive water use variation across all biome and land use types with remotely sensed evapotranspiration (ET) products; (3) analyzing the trade-off between terrestrial carbon and water stress condition during the photosynthesis process in response to different climatic/ecosystem conditions, and (4) developing a spatial optimization model to effectively determine possible reforestation/afforestation options considering the balance between water conservation and carbon fluxes. These studies were conducted with many recently developed algorithms and satellite imagery. This dissertation makes significant contributions and expands the knowledge of the variation in water consumption and carbon assimilation within the ecosystem when different conditions are present. In addition, the spatial optimization model was applied to the entire region to formulate possible reforestation plans under different water-carbon tradeoff scenarios for the first time. The findings and results of this research can be used to provide constructive suggestions to policymakers, managers, planners, government officials, and any other stakeholders in LMB to formulate policies and guidelines for the environmentally responsible and sustainable development of LMB.
ContributorsLi, Yubin (Author) / Myint, Soe (Thesis advisor) / Tong, Daoqin (Thesis advisor) / Muenich, Rebecca (Committee member) / Schaffer-Smith, Danica (Committee member) / Arizona State University (Publisher)
Created2023
187847-Thumbnail Image.png
Description
A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic)

A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic) cells. The numerical portion of this work (chapter 2) focuses on simulating GBM expansion in patients undergoing treatment for recurrence of tumor following initial surgery. The models are simulated on 3-dimensional brain geometries derived from magnetic resonance imaging (MRI) scans provided by the Barrow Neurological Institute. The study consists of 17 clinical time intervals across 10 patients that have been followed in detail, each of whom shows significant progression of tumor over a period of 1 to 3 months on sequential follow up scans. A Taguchi sampling design is implemented to estimate the variability of the predicted tumors to using 144 different choices of model parameters. In 9 cases, model parameters can be identified such that the simulated tumor contains at least 40 percent of the volume of the observed tumor. In the analytical portion of the paper (chapters 3 and 4), a positively invariant region for our 2-population model is identified. Then, a rigorous derivation of the critical patch size associated with the model is performed. The critical patch (KISS) size is the minimum habitat size needed for a population to survive in a region. Habitats larger than the critical patch size allow a population to persist, while smaller habitats lead to extinction. The critical patch size of the 2-population model is consistent with that of the Fisher-Kolmogorov-Petrovsky-Piskunov equation, one of the first reaction-diffusion models proposed for GBM. The critical patch size may indicate that GBM tumors have a minimum size depending on the location in the brain. A theoretical relationship between the size of a GBM tumor at steady-state and its maximum cell density is also derived, which has potential applications for patient-specific parameter estimation based on magnetic resonance imaging data.
ContributorsHarris, Duane C. (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric J. (Thesis advisor) / Preul, Mark C. (Committee member) / Crook, Sharon (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2023
156639-Thumbnail Image.png
Description
The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects

The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects are composed of representative species of bees and wasps, and all species of ants and termites. Much is known about their organizational structure, but remains to be discovered.

The success of social insects is dependent upon cooperative behavior and adaptive strategies shaped by natural selection that respond to internal or external conditions. The objective of my research was to investigate specific mechanisms that have helped shaped the structure of division of labor observed in social insect colonies, including age polyethism and nutrition, and phenomena known to increase colony survival such as egg cannibalism. I developed various Ordinary Differential Equation (ODE) models in which I applied dynamical, bifurcation, and sensitivity analysis to carefully study and visualize biological outcomes in social organisms to answer questions regarding the conditions under which a colony can survive. First, I investigated how the population and evolutionary dynamics of egg cannibalism and division of labor can promote colony survival. I then introduced a model of social conflict behavior to study the inclusion of different response functions that explore the benefits of cannibalistic behavior and how it contributes to age polyethism, the change in behavior of workers as they age, and its biological relevance. Finally, I introduced a model to investigate the importance of pollen nutritional status in a honeybee colony, how it affects population growth and influences division of labor within the worker caste. My results first reveal that both cannibalism and division of labor are adaptive strategies that increase the size of the worker population, and therefore, the persistence of the colony. I show the importance of food collection, consumption, and processing rates to promote good colony nutrition leading to the coexistence of brood and adult workers. Lastly, I show how taking into account seasonality for pollen collection improves the prediction of long term consequences.
ContributorsRodríguez Messan, Marisabel (Author) / Kang, Yun (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Kuang, Yang (Committee member) / Page Jr., Robert E (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2018
156753-Thumbnail Image.png
Description
Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling.

Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling. However, this approach is limited spatially and temporally in addition to being costly. In this study, the application of remotely sensed reflectance data from Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) and Landsat 8’s Operational Land Imager (OLI) along with data generated through field-sampling is used to gain a better understanding of the seasonal development of algal communities and levels of suspended particulates in the three main terminal reservoirs supplying water to the Phoenix metro area: Bartlett Lake, Lake Pleasant, and Saguaro Lake. Algal abundances, particularly the abundance of filamentous cyanobacteria, increased with warmer temperatures in all three reservoirs and reached the highest comparative abundance in Bartlett Lake. Prymnesiophytes (the class of algae to which the toxin-producing golden algae belong) tended to peak between June and August, with one notable peak occurring in Saguaro Lake in August 2017 during which time a fish-kill was observed. In the cooler months algal abundance was comparatively lower in all three lakes, with a more even distribution of abundance across algae classes. In-situ data from March 2017 to March 2018 were compared with algal communities sampled approximately ten years ago in each reservoir to understand any possible long-term changes. The findings show that the algal communities in the reservoirs are relatively stable, particularly those of the filamentous cyanobacteria, chlorophytes, and prymnesiophytes with some notable exceptions, such as the abundance of diatoms, which increased in Bartlett Lake and Lake Pleasant. When in-situ data were compared with Landsat-derived reflectance data, two-band combinations were found to be the best-estimators of chlorophyll-a concentration (as a proxy for algal biomass) and total suspended sediment concentration. The ratio of the reflectance value of the red band and the blue band produced reasonable estimates for the in-situ parameters in Bartlett Lake. The ratio of the reflectance value of the green band and the blue band produced reasonable estimates for the in-situ parameters in Saguaro Lake. However, even the best performing two-band algorithm did not produce any significant correlation between reflectance and in-situ data in Lake Pleasant. Overall, remotely-sensed observations can significantly improve our understanding of the water quality as measured by algae abundance and particulate loading in Arizona Reservoirs, especially when applied over long timescales.
ContributorsRussell, Jazmine Barkley (Author) / Neuer, Susanne (Thesis advisor) / Fox, Peter (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2018
156612-Thumbnail Image.png
Description
The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of

The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of mathematical (compartmental) modeling and statistical data analysis. In particular, the objective is to find suitable values and/or ranges of the climate variables considered (typically temperature and rainfall) for maximum vector abundance and consequently, maximum transmission intensity of the disease(s) they cause.

Motivated by the fact that understanding the dynamics of disease vector is crucial to understanding the transmission and control of the VBDs they cause, a novel weather-driven deterministic model for the population biology of the mosquito is formulated and rigorously analyzed. Numerical simulations, using relevant weather and entomological data for Anopheles mosquito (the vector for malaria), show that maximum mosquito abundance occurs when temperature and rainfall values lie in the range [20-25]C and [105-115] mm, respectively.

The Anopheles mosquito ecology model is extended to incorporate human dynamics. The resulting weather-driven malaria transmission model, which includes many of the key aspects of malaria (such as disease transmission by asymptomatically-infectious humans, and enhanced malaria immunity due to repeated exposure), was rigorously analyzed. The model which also incorporates the effect of diurnal temperature range (DTR) on malaria transmission dynamics shows that increasing DTR shifts the peak temperature value for malaria transmission from 29C (when DTR is 0C) to about 25C (when DTR is 15C).

Finally, the malaria model is adapted and used to study the transmission dynamics of chikungunya, dengue and Zika, three diseases co-circulating in the Americas caused by the same vector (Aedes aegypti). The resulting model, which is fitted using data from Mexico, is used to assess a few hypotheses (such as those associated with the possible impact the newly-released dengue vaccine will have on Zika) and the impact of variability in climate variables on the dynamics of the three diseases. Suitable temperature and rainfall ranges for the maximum transmission intensity of the three diseases are obtained.
ContributorsOkuneye, Kamaldeen O (Author) / Gumel, Abba B (Thesis advisor) / Kuang, Yang (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Nagy, John (Committee member) / Arizona State University (Publisher)
Created2018
156929-Thumbnail Image.png
Description
The Western Continental United States has a rapidly changing and complex ecosystem that provides valuable resources to a large portion of the nation. Changes in social and environmental factors have been observed to be significantly correlated to usable ground and surface water levels. The assessment of water level changes and

The Western Continental United States has a rapidly changing and complex ecosystem that provides valuable resources to a large portion of the nation. Changes in social and environmental factors have been observed to be significantly correlated to usable ground and surface water levels. The assessment of water level changes and their influences on a semi-national level is needed to support planning and decision making for water resource management at local levels. Although many studies have been done in Ground and Surface Water (GSW) trend analysis, very few have attempted determine correlations with other factors. The number of studies done on correlation factors at a semi-national scale and near decadal temporal scale is even fewer. In this study, freshwater resources in GSW changes from 2004 to 2017 were quantified and used to determine if and how environmental and social variables are related to GSW changes using publicly available remotely sensed and census data. Results indicate that mean annual changes of GSW of the study period are significantly correlated with LULC changes related to deforestation, urbanization, environmental trends, as well as social variables. Further analysis indicates a strong correlation in the rate of change of GSW to LULC changes related to deforestation, environmental trends, as well as social variables. GSW slope trend analysis also reveals a negative trend in California, New Mexico, Arizona, and Nevada. Whereas a positive GSW trend is evident in the northeast part of the study area. GSW trends were found to be somewhat consistent in the states of Utah, Idaho, and Colorado, implying that there was no GSW changes over time in these states.
ContributorsReynolds, Ryan (Author) / Myint, Soe (Thesis advisor) / Werth, Susanna (Committee member) / Brazel, Anthony (Committee member) / Arizona State University (Publisher)
Created2018
156933-Thumbnail Image.png
Description
Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid stage, which starts after the appearance of disease symptoms. The disease virus attacks the central nervous system, and then it migrates from peripheral nerves to the spinal cord and brain. At the time when

Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid stage, which starts after the appearance of disease symptoms. The disease virus attacks the central nervous system, and then it migrates from peripheral nerves to the spinal cord and brain. At the time when the rabies virus reaches the brain, the incubation period is over and the symptoms of clinical disease appear on the victim. From the brain, the virus travels via nerves to the salivary glands and saliva.

A mathematical model is developed for the spread of rabies in a spatially distributed fox population to model the spread of the rabies epizootic through middle Europe that occurred in the second half of the 20th century. The model considers both territorial and wandering rabid foxes and includes a latent period for the infection. Since the model assumes these two kinds of rabid foxes, it is a system of both partial differential and integral equations (with integration

over space and, occasionally, also over time). To study the spreading speeds of the rabies epidemic, the model is reduced to a scalar Volterra-Hammerstein integral equation, and space-time Laplace transform of the integral equation is used to derive implicit formulas for the spreading speed. The spreading speeds are discussed and implicit formulas are given for latent periods of fixed length, exponentially distributed length, Gamma distributed length, and log-normally distributed length. A number of analytic and numerical results are shown pertaining to the spreading speeds.

Further, a numerical algorithm is described for the simulation

of the spread of rabies in a spatially distributed fox population on a bounded domain with Dirichlet boundary conditions. I propose the following methods for the numerical approximation of solutions. The partial differential and integral equations are discretized in the space variable by central differences of second order and by

the composite trapezoidal rule. Next, the ordinary or delay differential equations that are obtained this way are discretized in time by explicit

continuous Runge-Kutta methods of fourth order for ordinary and delay differential systems. My particular interest

is in how the partition of rabid foxes into

territorial and diffusing rabid foxes influences

the spreading speed, a question that can be answered by purely analytic means only for small basic reproduction numbers. I will restrict the numerical analysis

to latent periods of fixed length and to exponentially

distributed latent periods.

The results of the numerical calculations

are compared for latent periods

of fixed and exponentially distributed length

and for various proportions of territorial

and wandering rabid foxes.

The speeds of spread observed in the

simulations are compared

to spreading speeds obtained by numerically solving the analytic formulas

and to observed speeds of epizootic frontlines

in the European rabies outbreak 1940 to 1980.
ContributorsAlanazi, Khalaf Matar (Author) / Thieme, Horst R. (Thesis advisor) / Jackiewicz, Zdzislaw (Committee member) / Baer, Steven (Committee member) / Gardner, Carl (Committee member) / Kuang, Yang (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2018
156960-Thumbnail Image.png
Description
Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the

Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the existence of emergent relationships and scale invariance properties in θ fields collected from the ground and airborne sensors during intensive field campaigns, mostly in natural landscapes. This dissertation advances the characterization of these relations and statistical properties of θ by (1) analyzing the role of irrigation, and (2) investigating how these properties change in time and across different landscape conditions through θ outputs of a distributed hydrologic model. First, θ observations from two field campaigns in Australia are used to explore how the presence of irrigated fields modifies the spatial distribution of θ and the associated scale invariance properties. Results reveal that the impact of irrigation is larger in drier regions or conditions, where irrigation creates a drastic contrast with the surrounding areas. Second, a physically-based distributed hydrologic model is applied in a regional basin in northern Mexico to generate hyperresolution θ fields, which are useful to conduct analyses in regions and times where θ has not been monitored. For this aim, strategies are proposed to address data, model validation, and computational challenges associated with hyperresolution hydrologic simulations. Third, analyses are carried out to investigate whether the hyperresolution simulated θ fields reproduce the statistical and scaling properties observed from the ground or remote sensors. Results confirm that (i) the relations between spatial mean and standard deviation of θ derived from the model outputs are very similar to those observed in other areas, and (ii) simulated θ fields exhibit the scale invariance properties that are consistent with those analyzed from aircraft-derived estimates. The simulated θ fields are then used to explore the influence of physical controls on the statistical properties, finding that soil properties significantly affect spatial variability and multifractality. The knowledge acquired through this dissertation provides insights on θ statistical properties in regions and landscape conditions that were never investigated before; supports the refinement of the calibration of multifractal downscaling models; and contributes to the improvement of hyperresolution hydrologic modeling.
ContributorsKo, Ara (Author) / Mascaro, Giuseppe (Thesis advisor) / Vivoni, Enrique R. (Thesis advisor) / Myint, Soe (Committee member) / Wang, Zhihua (Committee member) / Muenich, Rebecca (Committee member) / Arizona State University (Publisher)
Created2018
157532-Thumbnail Image.png
Description
Ideas from coding theory are employed to theoretically demonstrate the engineering of mutation-tolerant genes, genes that can sustain up to some arbitrarily chosen number of mutations and still express the originally intended protein. Attention is restricted to tolerating substitution mutations. Future advances in genomic engineering will make possible the ability

Ideas from coding theory are employed to theoretically demonstrate the engineering of mutation-tolerant genes, genes that can sustain up to some arbitrarily chosen number of mutations and still express the originally intended protein. Attention is restricted to tolerating substitution mutations. Future advances in genomic engineering will make possible the ability to synthesize entire genomes from scratch. This presents an opportunity to embed desirable capabilities like mutation-tolerance, which will be useful in preventing cell deaths in organisms intended for research or industrial applications in highly mutagenic environments. In the extreme case, mutation-tolerant genes (mutols) can make organisms resistant to retroviral infections.

An algebraic representation of the nucleotide bases is developed. This algebraic representation makes it possible to convert nucleotide sequences into algebraic sequences, apply mathematical ideas and convert results back into nucleotide terms. Using the algebra developed, a mapping is found from the naturally-occurring codons to an alternative set of codons which makes genes constructed from them mutation-tolerant, provided no more than one substitution mutation occurs per codon. The ideas discussed naturally extend to finding codons that can tolerate t arbitrarily chosen number of mutations per codon. Finally, random substitution events are simulated in both a wild-type green fluorescent protein (GFP) gene and its mutol variant and the amino acid sequence expressed from each post-mutation is compared with the amino acid sequence pre-mutation.

This work assumes the existence of synthetic protein-assembling entities that function like tRNAs but can read k nucleotides at a time, with k greater than or equal to 5. The realization of this assumption is presented as a challenge to the research community.
ContributorsAmpofo, Prince Kwame (Author) / Tian, Xiaojun (Thesis advisor) / Kiani, Samira (Committee member) / Kuang, Yang (Committee member) / Arizona State University (Publisher)
Created2019