Matching Items (102)
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
150146-Thumbnail Image.png
Description
Driven by concern over environmental, economic and social problems, small, place based communities are engaging in processes of transition to become more sustainable. These communities may be viewed as innovative front runners of a transition to a more sustainable society in general, each one, an experiment in social transformation. These

Driven by concern over environmental, economic and social problems, small, place based communities are engaging in processes of transition to become more sustainable. These communities may be viewed as innovative front runners of a transition to a more sustainable society in general, each one, an experiment in social transformation. These experiments present learning opportunities to build robust theories of community transition and to create specific, actionable knowledge to improve, replicate, and accelerate transitions in real communities. Yet to date, there is very little empirical research into the community transition phenomenon. This thesis empirically develops an analytical framework and method for the purpose of researching community transition processes, the ultimate goal of which is to arrive at a practice of evidence based transitions. A multiple case study approach was used to investigate three community transitions while simultaneously developing the framework and method in an iterative fashion. The case studies selected were Ashton Hayes, a small English village, BedZED, an urban housing complex in London, and Forres, a small Scottish town. Each community was visited and data collected by interview and document analysis. The research design brings together elements of process tracing, transformative planning and governance, sustainability assessment, transition path analysis and transition management within a multiple case study envelope. While some preliminary insights are gained into community transitions based on the three cases the main contribution of this thesis is in the creation of the research framework and method. The general framework and method developed has potential for standardizing and synthesizing research of community transition processes leading to both theoretical and practical knowledge that allows sustainability transition to be approached with confidence and not just hope.
ContributorsForrest, Nigel (Author) / Wiek, Arnim (Thesis advisor) / Golub, Aaron (Thesis advisor) / Redman, Charles (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2011
150149-Thumbnail Image.png
Description
The sacred San Francisco Peaks in northern Arizona have been at the center of a series of land development controversies since the 1800s. Most recently, a controversy arose over a proposal by the ski area on the Peaks to use 100% reclaimed water to make artificial snow. The current state

The sacred San Francisco Peaks in northern Arizona have been at the center of a series of land development controversies since the 1800s. Most recently, a controversy arose over a proposal by the ski area on the Peaks to use 100% reclaimed water to make artificial snow. The current state of the San Francisco Peaks controversy would benefit from a decision-making process that holds sustainability policy at its core. The first step towards a new sustainability-focused deliberative process regarding a complex issue like the San Francisco Peaks controversy requires understanding the issue's origins and the perspectives of the people involved in the issue. My thesis provides an historical analysis of the controversy and examines some of the laws and participatory mechanisms that have shaped the decision-making procedures and power structures from the 19th century to the early 21st century.
ContributorsMahoney, Maren (Author) / Hirt, Paul W. (Thesis advisor) / Tsosie, Rebecca (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2011
137706-Thumbnail Image.png
Description
Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions.

Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions. Water distribution statistics, stakeholders, policy structure, and government organization were combined in an organizational framework to compare the practices of the two cities. These inputs were weighed against the outcomes and the sustainability of each system. While Mesa is part of a massive metropolitan area, Hermosillo is still developing into a metropolitan center and does not have access to the same infrastructure and resources. In Hermosillo local needs are frequently discounted in favor of broad political goals.
ContributorsMoe, Rud Lamb (Author) / Chhetri, Netra (Thesis director) / White, Dave (Committee member) / Robles-Morua, Agustin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2013-05
151879-Thumbnail Image.png
Description
This dissertation investigates the long-term consequences of human land-use practices in general, and in early agricultural villages in specific. This pioneering case study investigates the "collapse" of the Early (Pre-Pottery) Neolithic lifeway, which was a major transformational event marked by significant changes in settlement patterns, material culture, and social markers.

This dissertation investigates the long-term consequences of human land-use practices in general, and in early agricultural villages in specific. This pioneering case study investigates the "collapse" of the Early (Pre-Pottery) Neolithic lifeway, which was a major transformational event marked by significant changes in settlement patterns, material culture, and social markers. To move beyond traditional narratives of cultural collapse, I employ a Complex Adaptive Systems approach to this research, and combine agent-based computer simulations of Neolithic land-use with dynamic and spatially-explicit GIS-based environmental models to conduct experiments into long-term trajectories of different potential Neolithic socio-environmental systems. My analysis outlines how the Early Neolithic "collapse" was likely instigated by a non-linear sequence of events, and that it would have been impossible for Neolithic peoples to recognize the long-term outcome of their actions. The experiment-based simulation approach shows that, starting from the same initial conditions, complex combinations of feedback amplification, stochasticity, responses to internal and external stimuli, and the accumulation of incremental changes to the socio-natural landscape, can lead to widely divergent outcomes over time. Thus, rather than being an inevitable consequence of specific Neolithic land-use choices, the "catastrophic" transformation at the end of the Early Neolithic was an emergent property of the Early Neolithic socio-natural system itself, and thus likely not an easily predictable event. In this way, my work uses the technique of simulation modeling to connect CAS theory with the archaeological and geoarchaeological record to help better understand the causes and consequences of socio-ecological transformation at a regional scale. The research is broadly applicable to other archaeological cases of resilience and collapse, and is truly interdisciplinary in that it draws on fields such as geomorphology, computer science, and agronomy in addition to archaeology.
ContributorsUllah, Isaac (Author) / Barton, C. Michael (Thesis advisor) / Banning, Edward B. (Committee member) / Clark, Geoffrey (Committee member) / Arrowsmith, J. Ramon (Committee member) / Arizona State University (Publisher)
Created2013
135710-Thumbnail Image.png
Description
The storm events of summer 2014 proved to be some of the highest on record for Maricopa County. Flash flooding has been an ongoing issue within Arizona during the monsoon season due to the remnants of hurricanes that result in short, high intensity storms. The proximity of these intense storm

The storm events of summer 2014 proved to be some of the highest on record for Maricopa County. Flash flooding has been an ongoing issue within Arizona during the monsoon season due to the remnants of hurricanes that result in short, high intensity storms. The proximity of these intense storm events and their corresponding flooding structures is imperative in reducing the impact of these events on the community. The analysis of the maximum precipitation events for Tempe, Scottsdale, Phoenix, Mesa, Chandler, Goodyear, Peoria, Avondale and Glendale during the summer of 2014 proved that there were many events that had a calculated recurrence of 100 years or greater. The storm event with the most precipitation events with a recurrence of 100 years or greater was September 8, 2014. This storm event also produced a streamflow response that had the highest recorded streamflow at gages near the events with a 100 year recurrence. These intervals represent a larger amount of rain during a precipitation event and this correlation suggests that short burst of extreme weather was not a trend in this data. Rather, high storm events occurred over the span of 24 hours. The most frequent response of the stream gage to this rain event was a streamflow event that has a recurrence of 2-5 years. This suggests that the channels and flooding structures used to contain the rain events were effective in reducing the amount of water and therefore effectively managing the flooding response. An analysis of newspaper commentary and an interview with a representative from the Flood Control District of Maricopa County (FCDMC) indicated that there is a disconnect between public perception and the structure of FCDMC. Through this analysis a better understanding of the FCDMC as well as the impact of severe storm events in Maricopa County was found.
ContributorsBrancati, Olivia Anne (Author) / Vivoni, Enrique (Thesis director) / White, Dave (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
141387-Thumbnail Image.png
Description

Objectives: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000–2008).

Methods: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to

Objectives: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000–2008).

Methods: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to map vulnerability and residential addresses of persons who died from heat exposure in 2,081 census block groups. Binary logistic regression and spatial analysis were used to associate deaths with neighborhoods.

Results: Neighborhood scores on three factors—socioeconomic vulnerability, elderly/isolation, and unvegetated area—varied widely throughout the study area. The preferred model (based on fit and parsimony) for predicting the odds of one or more deaths from heat exposure within a census block group included the first two factors and surface temperature in residential neighborhoods, holding population size constant. Spatial analysis identified clusters of neighborhoods with the highest heat vulnerability scores. A large proportion of deaths occurred among people, including homeless persons, who lived in the inner cores of the largest cities and along an industrial corridor.

Conclusions: Place-based indicators of vulnerability complement analyses of person-level heat risk factors. Surface temperature might be used in Maricopa County to identify the most heat-vulnerable neighborhoods, but more attention to the socioecological complexities of climate adaptation is needed.

ContributorsHarlan, Sharon L. (Author) / Declet-Barreto, Juan H. (Author) / Stefanov, William L. (Author) / Petitti, Diana B. (Author)
Created2013-02-01
141388-Thumbnail Image.png
Description

In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages

In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages <65 and ≥65 during the months May–October for years 2000–2008. The most robust relationship was between ATmax on day of death and mortality from direct exposure to high environmental heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90–97 °F; 32.2‒36.1 °C) were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C). Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C) with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C) and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C) and males <65 years (ATmax = 102 °F; 38.9 °C). Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.

ContributorsHarlan, Sharon L. (Author) / Chowell, Gerardo (Author) / Yang, Shuo (Author) / Petitti, Diana B. (Author) / Morales Butler, Emmanuel J. (Author) / Ruddell, Benjamin L. (Author) / Ruddell, Darren M. (Author)
Created2014-05-20
141389-Thumbnail Image.png
Description

Human exposure to excessively warm weather, especially in cities, is an increasingly important public health problem. This study examined heat-related health inequalities within one city in order to understand the relationships between the microclimates of urban neighborhoods, population characteristics, thermal environments that regulate microclimates, and the resources people possess to

Human exposure to excessively warm weather, especially in cities, is an increasingly important public health problem. This study examined heat-related health inequalities within one city in order to understand the relationships between the microclimates of urban neighborhoods, population characteristics, thermal environments that regulate microclimates, and the resources people possess to cope with climatic conditions. A simulation model was used to estimate an outdoor human thermal comfort index (HTCI) as a function of local climate variables collected in 8 diverse city neighborhoods during the summer of 2003 in Phoenix, USA. HTCI is an indicator of heat stress, a condition that can cause illness and death. There were statistically significant differences in temperatures and HTCI between the neighborhoods during the entire summer, which increased during a heat wave period. Lower socioeconomic and ethnic minority groups were more likely to live in warmer neighborhoods with greater exposure to heat stress. High settlement density, sparse vegetation, and having no open space in the neighborhood were significantly correlated with higher temperatures and HTCI. People in warmer neighborhoods were more vulnerable to heat exposure because they had fewer social and material resources to cope with extreme heat. Urban heat island reduction policies should specifically target vulnerable residential areas and take into account equitable distribution and preservation of environmental resources.

ContributorsHarlan, Sharon L. (Author) / Brazel, Anthony J. (Author) / Prashad, Lela (Author) / Stefanov, William L. (Author) / Larsen, Larissa (Author)
Created2006-09-25