Matching Items (24)
151925-Thumbnail Image.png
Description
This research addresses human adaptive decisions made at the Pleistocene-Holocene transition - the transition from the Last Glacial Maximum (LGM) to the climate regime in which humankind now lives - in the Mediterranean region of southeast Spain. Although on a geological time scale the Pleistocene-Holocene transition is the latest in

This research addresses human adaptive decisions made at the Pleistocene-Holocene transition - the transition from the Last Glacial Maximum (LGM) to the climate regime in which humankind now lives - in the Mediterranean region of southeast Spain. Although on a geological time scale the Pleistocene-Holocene transition is the latest in a series of widespread environmental transformations due to glacial-interglacial cycles, it is the only one for which we have a record of the response by modern humans. Mediterranean Spain lay outside the refugium areas of late Pleistocene Europe, in which advancing ice sheets limited the land available for subsistence and caused relative demographic packing of hunter-gatherers. Therefore, the archaeological records of Mediterranean Spain contain more generally applicable states of the Pleistocene-Holocene transition, making it a natural laboratory for research on human adaptation to an environmental transformation. Foragers in Mediterranean Spain appear to have primarily adapted to macroclimatic change by extending their social networks to access new subsistence resources and by changing the mix of traditional relationships. Comparing faunal records from two cave sites near the Mediterranean coast with Geographic Information System (GIS) reconstructions of the coastal littoral plain from the LGM to the Holocene indicates the loss of the large ungulate species (mainly Bos primigenius and Equus) at one site coincided with the associated littoral disappearing due to sea level rise in the late Upper Paleolithic. Farther north, where portions of the associated littoral remained due to a larger initial mass and a more favorable topography, the species represented in the faunal record were constant through time. Social boundary defense definitions of territory require arranging social relationships in order to access even this lightly populated new hunting area on the interior plain. That the values of the least-cost-paths fit the parameters of two models equating varying degrees of social alliance with direct travel distances also helps support the hypothesis that foragers in Mediterranean Spain adapted to the consequences of macroclimatic change by extending their social networks to gain access to new subsistence resources Keeping these relationships stable and reliable was a mitigating factor in the mobility patterns of foragers during this period from direct travel to more distant down-the-line exchange. Information about changing conditions and new circumstances flowed along these same networks of social relationships. The consequences of climate-induced environmental changes are already a concern in the world, and human decisions in regard to future conditions are built upon past precedents. As the response to environmental risk centers on increasing the resilience of vulnerable smallholders, archaeology has an opportunity to apply its long-term perspective in the search for answers
ContributorsSchmich, Steven A (Author) / Clark, Geoffrey A. (Thesis advisor) / Barton, Michael (Thesis advisor) / Bearat, Hamdallah (Committee member) / Jochim, Michael A. (Committee member) / Arizona State University (Publisher)
Created2013
152633-Thumbnail Image.png
Description
The Himalayan orogenic system is one of the youngest and most spectacular examples of a continent-continent collision on earth. Although the collision zone has been the subject of extensive research, fundamental questions remain concerning the architecture and evolution of the orogen. Of particular interest are the structures surrounding the 5

The Himalayan orogenic system is one of the youngest and most spectacular examples of a continent-continent collision on earth. Although the collision zone has been the subject of extensive research, fundamental questions remain concerning the architecture and evolution of the orogen. Of particular interest are the structures surrounding the 5 km high Tibetan Plateau, as these features record both the collisional and post-collisional evolution of the orogen. In this study we examine structures along the southwestern margin of the Tibetan Plateau, including the Karakoram (KFS) and Longmu Co (LCF) faults, and the Ladakh, Pangong and Karakoram Ranges. New low-temperature thermochronology data collected from across the Ladakh, Pangong and Karakoram Ranges improved the spatial resolution of exhumation patterns adjacent to the edge of the plateau. These data show a southwest to northeast decrease in cooling ages, which is the trailing end of a wave of decreased exhumation related to changes in the overall amount of north-south shortening accommodated across the region. We also posit that north-south shortening is responsible for the orientation of the LCF in India. Previously, the southern end of the LCF was unmapped. We used ASTER remotely sensed images to create a comprehensive lithologic map of the region, which allowed us to map the LCF into India. This mapping shows that this fault has been rotated into parallelism with the Karakoram fault system as a result of N-S shortening and dextral shear on the KFS. Additionally, the orientation and sense of motion along these two systems implies that they are acting as a conjugate fault pair, allowing the eastward extrusion of the Tibet. Finally, we identify and quantify late Quaternary slip on the Tangtse strand of the KFS, which was previously believed to be inactive. Our study found that this fault strand accommodated ca. 6 mm/yr of slip over the last ca. 33-6 ka. Additionally, we speculate that slip is temporally partitioned between the two fault strands, implying that this part of the fault system is more complex than previously believed.
ContributorsBohon, Wendy (Author) / Arrowsmith, Ramon (Thesis advisor) / Hodges, Kip V (Thesis advisor) / Whipple, Kelin X (Committee member) / Heimsath, Arjun (Committee member) / Reynolds, Steven (Committee member) / Arizona State University (Publisher)
Created2014
156588-Thumbnail Image.png
Description
Worldwide, rivers and streams make up dense, interconnected conveyor belts of sediment– removing carved away earth and transporting it downstream. The propensity of alluvial river beds to self-organize into complex trains of bedforms (i.e. ripples and dunes) suggests that the associated fluid and sediment dynamics over individual bedforms are an

Worldwide, rivers and streams make up dense, interconnected conveyor belts of sediment– removing carved away earth and transporting it downstream. The propensity of alluvial river beds to self-organize into complex trains of bedforms (i.e. ripples and dunes) suggests that the associated fluid and sediment dynamics over individual bedforms are an integral component of bedload transport (sediment rolled or bounced along the river bed) over larger scales. Generally speaking, asymmetric bedforms (such as alluvial ripples and dunes) migrate downstream via erosion on the stoss side of the bedform and deposition on the lee side of the bedform. Thus, the migration of bedforms is intrinsically linked to the downstream flux of bedload sediment. Accurate quantification of bedload transport is important for the management of waters, civil engineering, and river restoration efforts. Although important, accurate qualification of bedload transport is a difficult task that continues t elude researchers. This dissertation focuses on improving our understanding and quantification of bedload transport on the two spatial scales: the bedform scale and the reach (~100m) scale.

Despite a breadth of work investigating the spatiotemporal details of fluid dynamics over bedforms and bedload transport dynamics over flat beds, there remains a relative dearth of investigations into the spatiotemporal details of bedload transport over bedforms and on a sub-bedform scale. To address this, we conducted two sets of flume experiments focused on the two fundamental regions of flow associated with bedforms: flow separation/reattachment on the lee side of the bedform (Chapter 1; backward facing-step) and flow reacceleration up the stoss side of the next bedform (Chapter 2; two-dimensional bedform). Using Laser and Acoustic Doppler Velocimetry to record fluid turbulent events and manual particle tracking of high-speed imagery to record bedload transport dynamics, we identified the existence and importance of “permeable splat events” in the region proximal to flow reattachment.

These coupled turbulent and sediment transport events are integral to the spatiotemporal pattern of bedload transport over bedforms. Splat events are localized, high magnitude, intermittent flow features in which fluid impinges on the bed, infiltrates the top portion of bed, and then exfiltrates in all directions surrounding the point of impingement. This initiates bedload transport in a radial pattern. These turbulent structures are primarily associated with quadrant 1 and 4 turbulent structures (i.e. instantaneous fluid fluctuations in the streamwise direction that bring fluid down into the bed in the case of quadrant 1 events, or up away from the bed in the case of quadrant 4 events) and generate a distinct pattern of bedload transport compared to transport dynamics distal to flow reattachment. Distal to flow reattachment, bedload transport is characterized by relatively unidirectional transport. The dynamics of splat events, specifically their potential for inducing significant magnitudes of cross-stream transport, has important implications for the evolution of bedforms from simple, two dimensional features to complex, three-dimensional features.

New advancements in sonar technology have enabled more detailed quantification of bedload transport on the reach scale, a process paramount to the effective management of rivers with sand or gravel-dominated bed material. However, a practical and scalable field methodology for reliably estimating bedload remains elusive. A popular approach involves calculating transport from the geometry and celerity of migrating bedforms, extracted from time-series of bed elevation profiles (BEPs) acquired using echosounders. Using two sets of repeat multibeam sonar surveys from the Diamond Creek USGS gage station in Grand Canyon National Park with large spatio-temporal resolution and coverage, we compute bedload using three field techniques for acquiring BEPs: repeat multi-, single-, and multiple single-beam sonar. Significant differences in flux arise between repeat multibeam and single beam sonar. Mulitbeam and multiple single beam sonar systems can potentially yield comparable results, but the latter relies on knowledge of bedform geometries and flow that collectively inform optimal beam spacing and sampling rate. These results serve to guide design of optimal sampling, and for comparing transport estimates from different sonar configurations.
ContributorsLeary, Kate (Author) / Schmeeckle, Mark W (Thesis advisor) / Whipple, Kelin X (Thesis advisor) / Heimsath, Arjun (Committee member) / Walker, Ian (Committee member) / Arrowsmith, Ramon (Committee member) / Arizona State University (Publisher)
Created2018
157082-Thumbnail Image.png
Description
The recent emergence of global ‘megafires’ has made it imperative to better understand the role of humans in altering the size, distribution, and seasonality of fires. The dynamic relationship between humans and fire is not a recent phenomenon; rather, fire has deep roots in our biological and cultural evolution. Because

The recent emergence of global ‘megafires’ has made it imperative to better understand the role of humans in altering the size, distribution, and seasonality of fires. The dynamic relationship between humans and fire is not a recent phenomenon; rather, fire has deep roots in our biological and cultural evolution. Because of its long-term perspective, archaeology is uniquely positioned to investigate the social and ecological drivers behind anthropogenic fire. However, the field faces challenges in creating solution-oriented research for managing fire in the future. In this dissertation, I originate new methods and approaches to archaeological data that enable us to interpret humans’ long-term influences on fire regimes. I weave together human niche construction theory and ecological resilience, creating connections between archaeology, paleoecology, and fire ecology. Three, stand-alone studies illustrate the usefulness of these methods and theories for charting changes in land-use, fire-regimes, and vegetation communities during the Neolithic Transition (7600 - 3800 cal. BP) in eastern Spain. In the first study (Ch. II), I analyze archaeological survey data using Bayesian methods to extract land-use intensities from mixed surface assemblages from a case study in the Canal de Navarrés. The second study (Ch. III) builds on the archaeological data collected computational model of landscape fire, charcoal dispersion, and deposition to test how multiple models of natural and anthropogenic fire activity contributed to the formation a single sedimentary charcoal dataset from the Canal de Navarrés. Finally, the third study (Ch. IV) incorporates the modeling and data generated in the previous chapters into sampling and analysis of sedimentary charcoal data from alluvial contexts in three study areas throughout eastern Spain. Results indicate that anthropogenic fire played a significant role in the creation of agricultural landscapes during the Neolithic period, but sustained, low-intensity burning after the late Neolithic period maintained the human created niche for millennia beyond the arrival of agro-pastoral land-use. With global fire activity on the rise, it is vital to incorporate perspectives on the origins, development, and maintenance of human-fire relationships to effectively manage fire in today’s coupled social-ecological landscapes.
ContributorsSnitker, Grant (Author) / Barton, Michael (Thesis advisor) / Morehart, Christopher (Committee member) / Franklin, Janet (Committee member) / Arizona State University (Publisher)
Created2019
134537-Thumbnail Image.png
Description
Located in the Sunbelt of the Southwestern United States, Phoenix Arizona finds itself in one of the hottest, driest places in the world. Thankfully, Phoenix has the Salt River, Gila River, Verde River, and a vast aquifer to meet the water demands of the municipal, industrial, and agricultural sectors. However,

Located in the Sunbelt of the Southwestern United States, Phoenix Arizona finds itself in one of the hottest, driest places in the world. Thankfully, Phoenix has the Salt River, Gila River, Verde River, and a vast aquifer to meet the water demands of the municipal, industrial, and agricultural sectors. However, rampant groundwater pumping and over-allocation of these water supplies based on unprecedented, high flows of the Colorado River have created challenges for water managers to ensure adequate water supply for the future. Combined with the current 17-year drought and the warming and drying projections of climate change, the future of water availability in Phoenix will depend on the strength of water management laws, educating the public, developing a strong sense of community, and using development to manage population and support sustainability. As the prevalence of agriculture declines in and around Phoenix, a substantial amount of water is saved. Instead of storing this saved water, Phoenix is using it to support further development. Despite uncertainty regarding the abundant and continuous availability of Phoenix's water resources, development has hardly slowed and barely shifted directions to support sustainability. Phoenix was made to grow until it legally cannot expand anymore. In order to develop solutions, we must first understand the push for development in water-stressed Phoenix, Arizona.
ContributorsVasquez, Brianna Nicole (Author) / Heimsath, Arjun (Thesis director) / Whipple, Kelin (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of Community Resources and Development (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154295-Thumbnail Image.png
Description
This study explores how early modern humans used stone tool technology to adapt to changing climates and coastlines in the Middle Stone Age of South Africa. The MSA is associated with the earliest fossil evidence for modern humans and complex cultural behaviors during a time period of dramatic climate change.

This study explores how early modern humans used stone tool technology to adapt to changing climates and coastlines in the Middle Stone Age of South Africa. The MSA is associated with the earliest fossil evidence for modern humans and complex cultural behaviors during a time period of dramatic climate change. Human culture allows for the creation, use, and transmission of technological knowledge that can evolve with changing environmental conditions. Understanding the interactions between technology and the environment is essential to illuminating the role of culture during the origin of our species. This study is focused on understanding ancient tool use from the study of lithic edge damage patterns at archaeological assemblages in southern Africa by using image-based quantitative methods for analyzing stone tools. An extensive experimental program using replicated stone tools provides the comparative linkages between the archaeological artifacts and the tasks for which they were used. MSA foragers structured their tool use and discard behaviors on the landscape in several ways – by using and discarding hunting tools more frequently in the field rather than in caves/rockshelters, but similarly in coastal and interior contexts. This study provides evidence that during a significant microlithic technological shift seen in southern Africa at ~75,000 years ago, new technologies were developed alongside rather than replacing existing technologies. These results are compared with aspects of the European archaeological record at this time to identify features of early human technological behavior that may be unique to the evolutionary history of our species.
ContributorsSchoville, Benjamin J (Author) / Marean, Curtis W (Thesis advisor) / Barton, Michael (Committee member) / Hill, Kim (Committee member) / Arizona State University (Publisher)
Created2016
154568-Thumbnail Image.png
Description
Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development

Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development and nearly vestigial deciduous teeth. The development and functional occlusion of the primary postcanine dentition (i.e., deciduous premolars and molars) coincides with several life history parameters in great apes and indriids. This dissertation explored great ape dental macrowear, molar development in indriids, and molar size in lemurs with a broader goal of improving reconstructions of life history profiles in extinct primates. To this aim, macrowear and dental development were analyzed in apes and lemurs, respectively. Occlusal casts (six great ape species; N=278) were scanned to track mandibular fourth deciduous premolar (dp4) macrowear. Utilizing dental topographic analyses, changes in occlusal gradient and terrain were quantified. A subset of the great ape data (four species; n=199) was analyzed to test if differences in dp4 wear correlate with age at weaning. Using dental histology, molar development was reconstructed for Indri indri (n=1) and Avahi laniger (n=1). Life history and molar size data were collected from the literature. The results of this dissertation demonstrate that most great apes exhibited evidence of topographic maintenance, suggesting dp4s wear in a manner that maintain functional efficiency during growth and development; however, the manner in which maintenance is achieved (e.g., preservation of relief or complexity) is species specific. Dp4 macrowear is not correlated with age at weaning in great apes and is probably unreliable to reconstruct age at weaning in hominins. The pace of molar development in members of the indriid- palaeopropithecid clade did not correlate with body or brain size, an association present in several other primates. Associations of molar size with age at weaning suggest that expanding other developmental models (e.g., the inhibitory cascade) to life history is worth consideration. The broad variation in macrowear, dental development, and size highlights how the primary dentition may correlate with different life history parameters depending on the species and ecological setting, an important consideration when using teeth to reconstruct life history profiles.
ContributorsCatlett, Kierstin Kay (Author) / Schwartz, Gary (Thesis advisor) / Barton, Michael (Committee member) / Godfrey, Laurie (Committee member) / Reed, Kaye (Committee member) / Arizona State University (Publisher)
Created2016
155075-Thumbnail Image.png
Description
This dissertation examines the various factors and processes that have been proposed as explanations for the spread of agriculture in the west Mediterranean. The expansion of the Neolithic in the west Mediterranean (the Impresso-Cardial Neolithic) is characterized by a rapid spread of agricultural subsistence and material culture from the southern

This dissertation examines the various factors and processes that have been proposed as explanations for the spread of agriculture in the west Mediterranean. The expansion of the Neolithic in the west Mediterranean (the Impresso-Cardial Neolithic) is characterized by a rapid spread of agricultural subsistence and material culture from the southern portion of the Italian peninsula to the western coast of the Iberian peninsula. To address this unique case, four conceptual models of Neolithic spread have been proposed: the Wave of Advance, the Capillary Spread Model, the Maritime Pioneer Colonization Model and the Dual Model. An agent-based model, the Cardial Spread Model, was built to simulate each conceptual spread model in a spatially explicit environment for comparison with evidence from the archaeological record. Chronological information detailing the arrival of the Neolithic was used to create a map of the initial arrival of the Neolithic (a chronosurface) throughout the study area. The results of each conceptual spread model were then compared to the chronosurface in order to evaluate the relative performance of each conceptual model of spread. These experiments suggest that both the Dual and Maritime Pioneer Colonization models best fit the available chronological and spatial distribution of the Impresso-Cardial Neolithic.

For the purpose of informing agent movement and improving the fit of the conceptual spread models, a variety of paleoenvironmental maps were tested within the Cardial Spread Model. The outcome of these experiments suggests that topographic slope was an important factor in settlement location and that rivers were important vectors of transportation for early Neolithic migration. This research demonstrates the application of techniques rare to archaeological analysis, agent-based modeling and the inclusion of paleoenvironmental information, and provides a valuable tool that future researchers can utilize to further evaluate and fabricate new models of Neolithic expansion.
ContributorsBergin, Sean M (Author) / Barton, Michael (Thesis advisor) / Janssen, Marco (Committee member) / Coudart, Anick (Committee member) / Arizona State University (Publisher)
Created2016
Description
The South African Middle Stone Age (MSA), spanning the Middle to Late Pleistocene (Marine Isotope Stages (MIS) 8-3) witnessed major climatic and environmental change and dramatic change in forager technological organization including lithic raw material selection. Homo sapiens emerged during the MSA and had to make decisions about how to

The South African Middle Stone Age (MSA), spanning the Middle to Late Pleistocene (Marine Isotope Stages (MIS) 8-3) witnessed major climatic and environmental change and dramatic change in forager technological organization including lithic raw material selection. Homo sapiens emerged during the MSA and had to make decisions about how to organize technology to cope with environmental stressors, including lithic raw material selection, which can effect tool production and application, and mobility.

This project studied the role and importance of lithic raw materials in the technological organization of foragers by focusing on why lithic raw material selection sometimes changed when the behavioral and environmental context changed. The study used the Pinnacle Point (PP) MSA record (MIS6-3) in the Mossel Bay region, South Africa as the test case. In this region, quartzite and silcrete with dramatically different properties were the two most frequently exploited raw materials, and their relative abundances change significantly through time. Several explanations intertwined with major research questions over the origins of modern humans have been proposed for this change.

Two alternative lithic raw material procurement models were considered. The first, a computational model termed the Opportunistic Acquisition Model, posits that archaeological lithic raw material frequencies are due to opportunistic encounters during random walk. The second, an analytical model termed the Active-Choice Model drawn from the principles of Optimal Foraging Theory, posits that given a choice, individuals will choose the most cost effective means of producing durable cutting tools in their environment and will strategically select those raw materials.

An evaluation of the competing models found that lithic raw material selection was a strategic behavior in the PP record. In MIS6 and MIS5, the selection of quartzite was driven by travel and search cost, while during the MIS4, the joint selection of quartzite and silcrete was facilitated by a mobility strategy that focused on longer or more frequent stays at PP coupled with place provisioning. Further, the result suggests that specific raw materials and technology were relied on to obtain food resources and perform processing tasks suggesting knowledge about raw material properties and suitability for tasks.
ContributorsOestmo, Simen (Author) / Marean, Curtis W (Thesis advisor) / Barton, Michael (Committee member) / Hill, Kim R (Committee member) / Janssen, Marcus A (Committee member) / Surovell, Todd A (Committee member) / Arizona State University (Publisher)
Created2017
155152-Thumbnail Image.png
Description
One goal of geobiochemistry is to follow geochemical energy supplies from the external environment to the inside of microbial cells. This can be accomplished by combining thermodynamic calculations of energy supplies from geochemical processes and energy demands for biochemical processes. Progress towards this goal is summarized here. A critique of

One goal of geobiochemistry is to follow geochemical energy supplies from the external environment to the inside of microbial cells. This can be accomplished by combining thermodynamic calculations of energy supplies from geochemical processes and energy demands for biochemical processes. Progress towards this goal is summarized here. A critique of all thermodynamic data for biochemical compounds involved in the citric acid cycle (CAC) and the formulation of metabolite properties allows predictions of the energy involved in each step of the cycle as well as the full forward and reverse cycles over wide ranges of temperature and pressure. These results allow evaluation of energy demands at the center of many microbial metabolic systems. Field work, sampling, and lab analyses from two low-temperature systems, a serpentinizing system, and a subglacial setting, provide the data used in these thermodynamic analyses of energy supplies. An extensive literature summary of microbial and molecular data from serpentinizing systems found is used to guide the evaluation and ranking of energy supplies used by chemolithoautotrophic microbes. These results constrain models of the distribution of microbial metabolisms throughout the low-temperature serpentinization systems in the Samail ophiolite in Oman (including locales of primary and subsequent alteration processes). Data collected from Robertson Glacier in Alberta, Canada, together with literature data from Lake Vida in Antarctica and bottom seawater, allowed thermodynamic analyses of low-temperature energy supplies in a glacial system. Results for 1460 inorganic redox reactions are used to fully inventory the geochemical energy sources that support the globally extensive cold biosphere.
ContributorsCanovas, Peter Anthony (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Sharp, Thomas (Committee member) / Tyburczy, James (Committee member) / Heimsath, Arjun (Committee member) / Arizona State University (Publisher)
Created2016